Invariant methods for real-time object recognition and image understanding

Peter F. Stiller
{"title":"Invariant methods for real-time object recognition and image understanding","authors":"Peter F. Stiller","doi":"10.1117/12.922857","DOIUrl":null,"url":null,"abstract":"In this paper we discuss certain recently developed invariant geometric techniques that can be used for fast \nobject recognition or fast image understanding. The results make use of techniques from algebraic geometry \nthat allow one to relate the geometric invariants of a feature set in 3D to similar invariants in 2D or 1D. The \nmethods apply equally well to optical images or radar images. In addition to the \"object/image\" equations \nrelating these invariants, we also discuss certain invariant metrics and show why they provide a more natural \nand robust test for matching object features to image features. Additional aspects of the work as it applies to \nshape reconstruction and shape statistics will also be explored.","PeriodicalId":369288,"journal":{"name":"Real-Time Image and Video Processing","volume":"64 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.922857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we discuss certain recently developed invariant geometric techniques that can be used for fast object recognition or fast image understanding. The results make use of techniques from algebraic geometry that allow one to relate the geometric invariants of a feature set in 3D to similar invariants in 2D or 1D. The methods apply equally well to optical images or radar images. In addition to the "object/image" equations relating these invariants, we also discuss certain invariant metrics and show why they provide a more natural and robust test for matching object features to image features. Additional aspects of the work as it applies to shape reconstruction and shape statistics will also be explored.
实时目标识别和图像理解的不变方法
在本文中,我们讨论了一些最近发展的不变几何技术,可用于快速物体识别或快速图像理解。结果利用了代数几何中的技术,可以将3D特征集的几何不变量与2D或1D中的相似不变量联系起来。该方法同样适用于光学图像或雷达图像。除了与这些不变量相关的“对象/图像”方程之外,我们还讨论了某些不变量度量,并说明为什么它们为匹配对象特征和图像特征提供了更自然和更健壮的测试。其他方面的工作,因为它适用于形状重建和形状统计也将探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信