{"title":"Investigation of hydrazine electrooxidation performance of carbon nanotube supported Pd monometallic direct hydrazine fuel cell anode catalysts","authors":"Omer Faruk Er, Ali Cavak, A. Aldemir, H. Kivrak","doi":"10.51354/mjen.801182","DOIUrl":null,"url":null,"abstract":"In this study, carbon nanotube (CNT) supported Pd catalysts at varying Pd molar ratios are prepared via NaBH4 reduction method. Catalysts prepared for hydrazine electrooxidation are characterized via N2 adsorption-desorption measurements (BET), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). Electrochemical measurements are performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques by CHI660E potentiostat in a three-electrode system. According to the characterization results, Pd/CNT catalysts are successfully synthesized. For 5% Pd/CNT catalyst, the average particle size and the surface area determined as 5.17 nm and 773.10 m2 g-1 via TEM and BET, respectively. Between the Pd containing (0.1-20 wt %) CNT supported catalysts prepared, 5% Pd / CNT catalyst shows the best current density as 6.81 mA cm-2 (1122.63 mA mg-1 Pd). Furthermore, 5% Pd/CNT catalyst shows littlest charge transfer resistance (Rct) compared to Pd/CNT catalysts.","PeriodicalId":102219,"journal":{"name":"MANAS Journal of Engineering","volume":"55 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MANAS Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51354/mjen.801182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this study, carbon nanotube (CNT) supported Pd catalysts at varying Pd molar ratios are prepared via NaBH4 reduction method. Catalysts prepared for hydrazine electrooxidation are characterized via N2 adsorption-desorption measurements (BET), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). Electrochemical measurements are performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques by CHI660E potentiostat in a three-electrode system. According to the characterization results, Pd/CNT catalysts are successfully synthesized. For 5% Pd/CNT catalyst, the average particle size and the surface area determined as 5.17 nm and 773.10 m2 g-1 via TEM and BET, respectively. Between the Pd containing (0.1-20 wt %) CNT supported catalysts prepared, 5% Pd / CNT catalyst shows the best current density as 6.81 mA cm-2 (1122.63 mA mg-1 Pd). Furthermore, 5% Pd/CNT catalyst shows littlest charge transfer resistance (Rct) compared to Pd/CNT catalysts.