One Scan Sanitization of Informative Association Rules

Shyue-Liang Wang, R. Maskey, A. Jafari
{"title":"One Scan Sanitization of Informative Association Rules","authors":"Shyue-Liang Wang, R. Maskey, A. Jafari","doi":"10.1109/IRI.2006.252467","DOIUrl":null,"url":null,"abstract":"We propose here a one-scan sanitization algorithm to hide informative association rules. For a given predicting item, an informative association rule set by Jiuyong Li et. al, (2001) is the smallest association rule set that makes the same prediction as the entire association rule set by confidence priority. To hide association rules, previously proposed algorithms based on a priori approach require multiple scanning of database to calculate the supports of the large itemsets. In this work, we propose using a pattern-inversion tree to store related information so that only one scan of database is required. Numerical experiments show that the performance is more efficient than previous algorithms with similar side effects","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose here a one-scan sanitization algorithm to hide informative association rules. For a given predicting item, an informative association rule set by Jiuyong Li et. al, (2001) is the smallest association rule set that makes the same prediction as the entire association rule set by confidence priority. To hide association rules, previously proposed algorithms based on a priori approach require multiple scanning of database to calculate the supports of the large itemsets. In this work, we propose using a pattern-inversion tree to store related information so that only one scan of database is required. Numerical experiments show that the performance is more efficient than previous algorithms with similar side effects
信息关联规则的一次扫描处理
本文提出了一种一扫清除算法来隐藏信息关联规则。对于给定的预测项,李九勇等(2001)的信息性关联规则集是最小的关联规则集,它按照置信度优先级与整个关联规则集进行相同的预测。为了隐藏关联规则,以前提出的基于先验方法的算法需要多次扫描数据库来计算大项目集的支持度。在这项工作中,我们建议使用模式反转树来存储相关信息,这样只需要对数据库进行一次扫描。数值实验表明,该算法在副作用相似的情况下,比以往的算法效率更高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信