Algorithmic correspondence and analytic rules

Andrea De Domenico, G. Greco
{"title":"Algorithmic correspondence and analytic rules","authors":"Andrea De Domenico, G. Greco","doi":"10.48550/arXiv.2203.14147","DOIUrl":null,"url":null,"abstract":"We introduce the algorithm MASSA which takes classical modal formulas in input, and, when successful, effectively generates: (a) (analytic) geometric rules of the labelled calculus G3K, and (b) cut-free derivations (of a certain `canonical' shape) of each given input formula in the geometric labelled calculus obtained by adding the rule in output to G3K. We show that MASSA successfully terminates whenever its input formula is a (definite) analytic inductive formula, in which case, the geometric axiom corresponding to the output rule is, modulo logical equivalence, the first-order correspondent of the input formula.","PeriodicalId":129696,"journal":{"name":"Advances in Modal Logic","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Modal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.14147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the algorithm MASSA which takes classical modal formulas in input, and, when successful, effectively generates: (a) (analytic) geometric rules of the labelled calculus G3K, and (b) cut-free derivations (of a certain `canonical' shape) of each given input formula in the geometric labelled calculus obtained by adding the rule in output to G3K. We show that MASSA successfully terminates whenever its input formula is a (definite) analytic inductive formula, in which case, the geometric axiom corresponding to the output rule is, modulo logical equivalence, the first-order correspondent of the input formula.
算法对应与分析规则
我们介绍了采用经典模态公式作为输入的算法MASSA,当成功时,它有效地生成:(a)标记微积分G3K的(解析)几何规则,以及(b)通过将输出中的规则添加到G3K中得到的几何标记微积分中每个给定输入公式的无切导(某种“正则”形状)。我们证明了只要MASSA的输入公式是一个(定的)解析归纳公式,MASSA就能成功终止,在这种情况下,输出规则对应的几何公理是输入公式的一阶对应的模逻辑等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信