Sensor fault diagnosis in water-steam power plant: A combined observer-based/pattern-recognition approach

G. Fadda, A. Pilloni, A. Pisano, E. Usai, A. Marjanović, S. Vujnovic
{"title":"Sensor fault diagnosis in water-steam power plant: A combined observer-based/pattern-recognition approach","authors":"G. Fadda, A. Pilloni, A. Pisano, E. Usai, A. Marjanović, S. Vujnovic","doi":"10.1109/RASM.2015.7154643","DOIUrl":null,"url":null,"abstract":"This work deals with the problem of model-based sensor FDI in water-steam power plants where, due to extreme pressure and temperature conditions, measurement sensors are prone to failures. Faults in the measurement devices of output variables (water flow and level) and of input variable (steam flow) are considered. When both the output and input measurements are subject to faults it is hard to detect and estimate them. To overcome this limitation and achieve FDI, we propose to use a sliding mode observer (SMO) and to make an appropriate signature analysis on the resulting output injection terms in order to identify a “distinguishing” signature for each fault. The performance of the proposed scheme has been evaluated off-line using real-data taken from the TEKO B1 Thermal Power Plant of Kostolac (Serbia) whose nominal power is 330 MW.","PeriodicalId":297041,"journal":{"name":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","volume":"22 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Recent Advances in Sliding Modes (RASM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASM.2015.7154643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work deals with the problem of model-based sensor FDI in water-steam power plants where, due to extreme pressure and temperature conditions, measurement sensors are prone to failures. Faults in the measurement devices of output variables (water flow and level) and of input variable (steam flow) are considered. When both the output and input measurements are subject to faults it is hard to detect and estimate them. To overcome this limitation and achieve FDI, we propose to use a sliding mode observer (SMO) and to make an appropriate signature analysis on the resulting output injection terms in order to identify a “distinguishing” signature for each fault. The performance of the proposed scheme has been evaluated off-line using real-data taken from the TEKO B1 Thermal Power Plant of Kostolac (Serbia) whose nominal power is 330 MW.
水蒸汽电厂传感器故障诊断:基于观测器/模式识别相结合的方法
本文研究了基于模型的水蒸汽发电厂传感器FDI问题,在这种情况下,由于极端的压力和温度条件,测量传感器容易发生故障。考虑了输出变量(水流量和液位)和输入变量(蒸汽流量)测量装置的故障。当输出和输入测量都存在故障时,很难检测和估计故障。为了克服这一限制并实现FDI,我们建议使用滑模观测器(SMO)并对产生的输出注入项进行适当的签名分析,以便为每个故障识别“区分”签名。利用塞尔维亚科斯托拉茨标称功率为330兆瓦的TEKO B1热电厂的实际数据,对该方案的性能进行了离线评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信