Adaptive step duration in biped walking: A robust approach to nonlinear constraints

N. Bohorquez, Pierre-Brice Wieber
{"title":"Adaptive step duration in biped walking: A robust approach to nonlinear constraints","authors":"N. Bohorquez, Pierre-Brice Wieber","doi":"10.1109/HUMANOIDS.2017.8246952","DOIUrl":null,"url":null,"abstract":"When a biped robot is walking in a crowd, being able to adapt the duration of steps is a key element to avoid collisions. Model Predictive Control (MPC) schemes for biped walking usually assume a fixed step duration since adapting it leads to a nonlinear problem, in general. Nonlinear solvers do not guarantee the satisfaction of nonlinear constraints at every iterate and this can be problematic for the real-time operation of robots. We propose a method to make sure that all iterates satisfy the nonlinear constraints by borrowing concepts from robust control: we make the problem robust to nonlinearities within some bounds. These bounds are linear with respect to the variables of the problem and can be adapted online.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"507 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

When a biped robot is walking in a crowd, being able to adapt the duration of steps is a key element to avoid collisions. Model Predictive Control (MPC) schemes for biped walking usually assume a fixed step duration since adapting it leads to a nonlinear problem, in general. Nonlinear solvers do not guarantee the satisfaction of nonlinear constraints at every iterate and this can be problematic for the real-time operation of robots. We propose a method to make sure that all iterates satisfy the nonlinear constraints by borrowing concepts from robust control: we make the problem robust to nonlinearities within some bounds. These bounds are linear with respect to the variables of the problem and can be adapted online.
双足步行的自适应步长:非线性约束的鲁棒方法
当双足机器人在人群中行走时,能够调整步幅是避免碰撞的关键因素。模型预测控制(MPC)方案通常采用固定的步长,因为对其进行调整会导致非线性问题。非线性求解器不能保证每次迭代都满足非线性约束,这可能会给机器人的实时运行带来问题。我们借鉴鲁棒控制的概念,提出了一种确保所有迭代都满足非线性约束的方法:使问题在一定范围内对非线性具有鲁棒性。这些边界对于问题的变量是线性的,并且可以在线调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信