Hybrid implementation of neural nets using switched resistor technique

H. El-Bakry, M. Abo-Elsoud
{"title":"Hybrid implementation of neural nets using switched resistor technique","authors":"H. El-Bakry, M. Abo-Elsoud","doi":"10.1109/NRSC.1998.711492","DOIUrl":null,"url":null,"abstract":"A simple hybrid implementation technique for realizing ANNs is presented. The technique is used for realizing a network of two layers in order to make a classification between two characters T and C independent of position, rotation, and scaling. The programmability of adaptive CMOS synaptic weights is achieved by employing the switched resistor (SR) technique. Due to the exponential nature of the bipolar transistors, the sigmoid function is represented by using bipolar transistors. So, the proposed neuron is fully compatible with BiCMOS technology. This implementation technique can be used for different applications.","PeriodicalId":128355,"journal":{"name":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1998.711492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simple hybrid implementation technique for realizing ANNs is presented. The technique is used for realizing a network of two layers in order to make a classification between two characters T and C independent of position, rotation, and scaling. The programmability of adaptive CMOS synaptic weights is achieved by employing the switched resistor (SR) technique. Due to the exponential nature of the bipolar transistors, the sigmoid function is represented by using bipolar transistors. So, the proposed neuron is fully compatible with BiCMOS technology. This implementation technique can be used for different applications.
基于开关电阻技术的神经网络混合实现
提出了一种简单的人工神经网络混合实现技术。该技术用于实现两层网络,以便在两个字符T和C之间进行独立于位置,旋转和缩放的分类。采用开关电阻(SR)技术实现了自适应CMOS突触权值的可编程性。由于双极晶体管的指数性质,sigmoid函数用双极晶体管表示。因此,所提出的神经元与BiCMOS技术完全兼容。这种实现技术可用于不同的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信