Robust Empirical Risk Minimization with Tolerance

Robi Bhattacharjee, Max Hopkins, Akash Kumar, Hantao Yu, Kamalika Chaudhuri
{"title":"Robust Empirical Risk Minimization with Tolerance","authors":"Robi Bhattacharjee, Max Hopkins, Akash Kumar, Hantao Yu, Kamalika Chaudhuri","doi":"10.48550/arXiv.2210.00635","DOIUrl":null,"url":null,"abstract":"Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) $\\textit{empirical risk minimization}$ (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called $\\textit{tolerant}$ robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for $\\gamma$-tolerant robust learning VC classes over $\\mathbb{R}^d$, and requires only $\\tilde{O}\\left( \\frac{VC(H)d\\log \\frac{D}{\\gamma\\delta}}{\\epsilon^2}\\right)$ samples for robustness regions of (maximum) diameter $D$.","PeriodicalId":267197,"journal":{"name":"International Conference on Algorithmic Learning Theory","volume":"591 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithmic Learning Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.00635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) $\textit{empirical risk minimization}$ (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called $\textit{tolerant}$ robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for $\gamma$-tolerant robust learning VC classes over $\mathbb{R}^d$, and requires only $\tilde{O}\left( \frac{VC(H)d\log \frac{D}{\gamma\delta}}{\epsilon^2}\right)$ samples for robustness regions of (maximum) diameter $D$.
具有容忍度的稳健经验风险最小化
在当今以技术为主导的世界中,为鲁棒分类开发简单、样本效率高的学习算法是一个紧迫的问题,而目前需要指数样本复杂性和复杂的不当学习规则的理论技术远远不能满足需求。在这项工作中,我们研究了(鲁棒)$\textit{empirical risk minimization}$ (RERM)的基本范式,这是一个简单的过程,其中学习者输出任何最小化其训练误差的假设。众所周知,RERM无法稳健地学习VC类(Montasser等人,2019a),我们展示的界限甚至延伸到“不错”的设置,如(有界)半空间。因此,我们研究了一种名为$\textit{tolerant}$鲁棒学习的鲁棒模型的最新松弛(Ashtiani等人,2022),其中将输出分类器与略大的扰动集上的最佳可实现误差进行比较。我们表明,在几何优美条件下,RERM的自然容忍变体确实足以在$\mathbb{R}^d$上进行$\gamma$容忍鲁棒学习VC类,并且只需要$\tilde{O}\left( \frac{VC(H)d\log \frac{D}{\gamma\delta}}{\epsilon^2}\right)$样本即可获得(最大)直径$D$的鲁棒区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信