Difficulties and Improvements to Graph-Based Lexical Sentiment Analysis Using LISA

Mireille Fares, Angela Moufarrej, Eliane Jreij, Joe Tekli, W. Grosky
{"title":"Difficulties and Improvements to Graph-Based Lexical Sentiment Analysis Using LISA","authors":"Mireille Fares, Angela Moufarrej, Eliane Jreij, Joe Tekli, W. Grosky","doi":"10.1109/ICCC.2019.00008","DOIUrl":null,"url":null,"abstract":"Lexical sentiment analysis (LSA) underlines a family of methods combining natural language processing, machine learning, or graph navigation techniques to identify the underlying sentiments or emotions carried in textual data. In this paper, we introduce LISA, an unsupervised word-level knowledge graph-based LexIcal Sentiment Analysis framework. It uses different variants of shortest path graph navigation techniques to compute and propagate affective scores in a lexical-affective graph (LAG), created by connecting a typical lexical knowledgebase (KB) like WordNet, with a reliable affect KB like WordNet-Affect Hierarchy. LISA was designed in two consecutive iterations, producing two main modules: i) LISA 1.0 for affect navigation, and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 suffered from the semantic connectivity problem shared by some existing lexicon-based methods, and required polynomial execution time. This led to the development of LISA 2.0, which i) processes affective relationships separately from lexical/semantic connections (solving the semantic connectivity problem of LISA 1.0), and ii) produces a sentiment lexicon which can be searched in logarithmic time (handling LISA 1.0's efficiency problem). Experimental results on the ANEW dataset show that LISA 2.0, while completely unsupervised, is on a par with existing supervised solutions, highlighting its quality and potential.","PeriodicalId":262923,"journal":{"name":"2019 IEEE International Conference on Cognitive Computing (ICCC)","volume":"437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Cognitive Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Lexical sentiment analysis (LSA) underlines a family of methods combining natural language processing, machine learning, or graph navigation techniques to identify the underlying sentiments or emotions carried in textual data. In this paper, we introduce LISA, an unsupervised word-level knowledge graph-based LexIcal Sentiment Analysis framework. It uses different variants of shortest path graph navigation techniques to compute and propagate affective scores in a lexical-affective graph (LAG), created by connecting a typical lexical knowledgebase (KB) like WordNet, with a reliable affect KB like WordNet-Affect Hierarchy. LISA was designed in two consecutive iterations, producing two main modules: i) LISA 1.0 for affect navigation, and ii) LISA 2.0 for affect propagation and lookup. LISA 1.0 suffered from the semantic connectivity problem shared by some existing lexicon-based methods, and required polynomial execution time. This led to the development of LISA 2.0, which i) processes affective relationships separately from lexical/semantic connections (solving the semantic connectivity problem of LISA 1.0), and ii) produces a sentiment lexicon which can be searched in logarithmic time (handling LISA 1.0's efficiency problem). Experimental results on the ANEW dataset show that LISA 2.0, while completely unsupervised, is on a par with existing supervised solutions, highlighting its quality and potential.
基于LISA的基于图的词汇情感分析的难点与改进
词汇情感分析(LSA)强调了一系列结合自然语言处理、机器学习或图形导航技术的方法,以识别文本数据中携带的潜在情感或情绪。本文介绍了基于无监督词级知识图的词法情感分析框架LISA。它使用最短路径图导航技术的不同变体来计算和传播词汇-情感图(LAG)中的情感分数,该图是通过连接典型的词汇知识库(KB)(如WordNet)和可靠的影响知识库(如WordNet- affect Hierarchy)创建的。LISA的设计经历了两次连续的迭代,产生了两个主要模块:i) LISA 1.0用于情感导航,ii) LISA 2.0用于情感传播和查找。LISA 1.0存在一些现有基于词典的方法所共有的语义连通性问题,并且需要多项式的执行时间。这导致了LISA 2.0的发展,它i)将情感关系与词汇/语义连接分开处理(解决了LISA 1.0的语义连通性问题),ii)产生一个可以在对数时间内搜索的情感词典(解决了LISA 1.0的效率问题)。在新数据集上的实验结果表明,LISA 2.0虽然完全无监督,但与现有的有监督解决方案相当,突出了其质量和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信