Detection and correction of disparity estimation errors via supervised learning

C. Varekamp, K. Hinnen, W. Simons
{"title":"Detection and correction of disparity estimation errors via supervised learning","authors":"C. Varekamp, K. Hinnen, W. Simons","doi":"10.1109/IC3D.2013.6732078","DOIUrl":null,"url":null,"abstract":"We propose a supervised learning method for detecting disparity estimation errors in a disparity map. A classifier is trained using features of low computational complexity. The proposed method can in principle be used to improve the performance of any disparity estimation algorithm. The results presented in this paper are therefore of general interest for those working on disparity estimation. In addition, our method solves the problem of needing a large variation of input stereo video with ground truth disparity. In our approach, we visually inspect a disparity map and manually annotate blocks that appear to be errors and blocks that appear to be correct. We then train a classifier to do this work automatically. Recursive predictions are used to correct errors. Our manual annotation approach has the advantage that `ground truth' data is generated via low-cost annotation of arbitrary stereo video.","PeriodicalId":252498,"journal":{"name":"2013 International Conference on 3D Imaging","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on 3D Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D.2013.6732078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a supervised learning method for detecting disparity estimation errors in a disparity map. A classifier is trained using features of low computational complexity. The proposed method can in principle be used to improve the performance of any disparity estimation algorithm. The results presented in this paper are therefore of general interest for those working on disparity estimation. In addition, our method solves the problem of needing a large variation of input stereo video with ground truth disparity. In our approach, we visually inspect a disparity map and manually annotate blocks that appear to be errors and blocks that appear to be correct. We then train a classifier to do this work automatically. Recursive predictions are used to correct errors. Our manual annotation approach has the advantage that `ground truth' data is generated via low-cost annotation of arbitrary stereo video.
基于监督学习的视差估计误差检测与校正
我们提出了一种监督学习方法来检测视差图中的视差估计误差。分类器是使用低计算复杂度的特征来训练的。该方法原则上可用于提高任何视差估计算法的性能。因此,本文提出的结果对从事视差估计工作的人具有普遍的兴趣。此外,我们的方法还解决了输入立体视频需要大变化的问题。在我们的方法中,我们可以直观地检查视差图,并手动注释看起来是错误的块和看起来是正确的块。然后我们训练一个分类器来自动完成这项工作。递归预测用于纠正错误。我们的手动标注方法的优点是,“地面真实”数据是通过对任意立体视频的低成本标注生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信