Wei Yan, Yuan Xue, Xiaowei Li, Jiannian Weng, T. Busch, J. Sztipanovits
{"title":"Integrated simulation and emulation platform for cyber-physical system security experimentation","authors":"Wei Yan, Yuan Xue, Xiaowei Li, Jiannian Weng, T. Busch, J. Sztipanovits","doi":"10.1145/2185505.2185519","DOIUrl":null,"url":null,"abstract":"There is a pressing need to evaluate both cyber- and physical systems together and holistically for a rapidly growing number of applications using simulation and emulation in a realistic environment, which brings realistic attacks against the defensive capabilities of CPS (Cyber-Physical System). Without the support from appropriate tools and run-time environments, this assessment process can be extremely time-consuming and error-prone, if possible at all. In this paper, we present iSEE - integrated Simulation and Emulation platform for security Experimentation, as a \"software supporting research infrastructure used for cyber security research and development\". iSEE allows for the concurrent modeling, experimentation and evaluation of CPS that range from a fully simulated to a fully implemented system. iSEE has two major components: 1) modeling environment for system specification and experiment configuration and 2) run-time environment that supports experiment execution. iSEE employs the Model-Integrated-Computing (MIC) approach, which explicitly uses models throughout the experiment environments and integrates them at the domain-specific model level. The run-time environment of iSEE integrates Matlab and the DETERlab testbed to support realistic assessment of CPS on real distributed networking environments in its early design phase, before a fully implemented system is available. At run time, iSEE provides time synchronization and data communication and coordinates the execution of the security experiment across simulation and emulation platforms.","PeriodicalId":203753,"journal":{"name":"International Conference on High Confidence Networked Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on High Confidence Networked Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185505.2185519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
There is a pressing need to evaluate both cyber- and physical systems together and holistically for a rapidly growing number of applications using simulation and emulation in a realistic environment, which brings realistic attacks against the defensive capabilities of CPS (Cyber-Physical System). Without the support from appropriate tools and run-time environments, this assessment process can be extremely time-consuming and error-prone, if possible at all. In this paper, we present iSEE - integrated Simulation and Emulation platform for security Experimentation, as a "software supporting research infrastructure used for cyber security research and development". iSEE allows for the concurrent modeling, experimentation and evaluation of CPS that range from a fully simulated to a fully implemented system. iSEE has two major components: 1) modeling environment for system specification and experiment configuration and 2) run-time environment that supports experiment execution. iSEE employs the Model-Integrated-Computing (MIC) approach, which explicitly uses models throughout the experiment environments and integrates them at the domain-specific model level. The run-time environment of iSEE integrates Matlab and the DETERlab testbed to support realistic assessment of CPS on real distributed networking environments in its early design phase, before a fully implemented system is available. At run time, iSEE provides time synchronization and data communication and coordinates the execution of the security experiment across simulation and emulation platforms.