{"title":"About the convergence of the Fourier transform","authors":"Mohamed-Ahmed Boudref","doi":"10.31029/demr.15.1","DOIUrl":null,"url":null,"abstract":"The main result is the proof of the theorems, the results of which one can\ncharacterize as a weak form of the formula for the inversion of the bi-dimmensional Fourier transform. Sufficient conditions on a function are obtained for a weak (of degree $r$) convergence of bi-dimmensional Fourier transform for a function $f(x;y)$. These conditions have an integral form and describe the behavior of the function near the border of a rectangle. A similar theorem is proved, in which the Fourier transform of a function $f$ is replaced by the Fourier transform of another function $g$, the norm of the central difference of which does not exceed the norm of the central difference of $f$.\nThe principal objective is to study the behavior of the Fourier transform of \n$g$ and $f$.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main result is the proof of the theorems, the results of which one can
characterize as a weak form of the formula for the inversion of the bi-dimmensional Fourier transform. Sufficient conditions on a function are obtained for a weak (of degree $r$) convergence of bi-dimmensional Fourier transform for a function $f(x;y)$. These conditions have an integral form and describe the behavior of the function near the border of a rectangle. A similar theorem is proved, in which the Fourier transform of a function $f$ is replaced by the Fourier transform of another function $g$, the norm of the central difference of which does not exceed the norm of the central difference of $f$.
The principal objective is to study the behavior of the Fourier transform of
$g$ and $f$.