Foreground Detection Using the Choquet Integral

Fida El Baf, T. Bouwmans, B. Vachon
{"title":"Foreground Detection Using the Choquet Integral","authors":"Fida El Baf, T. Bouwmans, B. Vachon","doi":"10.1109/WIAMIS.2008.9","DOIUrl":null,"url":null,"abstract":"Foreground Detection is a key step in background subtraction problem. This approach consists in the detection of moving objects from static cameras through a classification process of pixels as foreground or background. The presence of some critical situations i.e noise, illumination changes and structural background changes produces an uncertainty in the classification of image pixels which can generate false detections. In this context, we propose a fuzzy approach using the Choquet integral to avoid the uncertainty in the classification. The experiments on different video datasets have been realized by testing different color space and by fusing color and texture features. The proposed method is characterized through robustness against illumination changes, shadows and little background changes, and it is validated with the experimental results.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Foreground Detection is a key step in background subtraction problem. This approach consists in the detection of moving objects from static cameras through a classification process of pixels as foreground or background. The presence of some critical situations i.e noise, illumination changes and structural background changes produces an uncertainty in the classification of image pixels which can generate false detections. In this context, we propose a fuzzy approach using the Choquet integral to avoid the uncertainty in the classification. The experiments on different video datasets have been realized by testing different color space and by fusing color and texture features. The proposed method is characterized through robustness against illumination changes, shadows and little background changes, and it is validated with the experimental results.
基于Choquet积分的前景检测
前景检测是背景减法的关键步骤。这种方法包括通过将像素分类为前景或背景,从静态相机中检测移动物体。一些关键情况的存在,如噪声、光照变化和结构背景变化,会对图像像素的分类产生不确定性,从而产生错误的检测。在这种情况下,我们提出了一种使用Choquet积分的模糊方法来避免分类中的不确定性。通过测试不同的色彩空间和融合颜色和纹理特征,实现了在不同视频数据集上的实验。该方法对光照变化、阴影和小背景变化具有较强的鲁棒性,实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信