Fuzzy neural tree in evolutionary computation for architectural design cognition

Ö. Ciftcioglu, M. Bittermann
{"title":"Fuzzy neural tree in evolutionary computation for architectural design cognition","authors":"Ö. Ciftcioglu, M. Bittermann","doi":"10.1109/CEC.2015.7257171","DOIUrl":null,"url":null,"abstract":"A novel fuzzy-neural tree (FNT) is presented. Each tree node uses a Gaussian as a fuzzy membership function, so that the approach uniquely is in align with both the probabilistic and possibilistic interpretations of fuzzy membership. It provides a type of logical operation by fuzzy logic (FL) in a neural structure in the form of rule-chaining, yielding a novel concept of weighted fuzzy logical AND and OR operation. The tree can be supplemented both by expert knowledge, as well as data set provisions for model formation. The FNT is described in detail pointing out its various potential utilizations demanding complex modeling and multi-objective optimization therein. One of such demands concerns cognitive computing for design cognition. This is exemplified and its effectiveness is demonstrated by computer experiments in the realm of Architectural design.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel fuzzy-neural tree (FNT) is presented. Each tree node uses a Gaussian as a fuzzy membership function, so that the approach uniquely is in align with both the probabilistic and possibilistic interpretations of fuzzy membership. It provides a type of logical operation by fuzzy logic (FL) in a neural structure in the form of rule-chaining, yielding a novel concept of weighted fuzzy logical AND and OR operation. The tree can be supplemented both by expert knowledge, as well as data set provisions for model formation. The FNT is described in detail pointing out its various potential utilizations demanding complex modeling and multi-objective optimization therein. One of such demands concerns cognitive computing for design cognition. This is exemplified and its effectiveness is demonstrated by computer experiments in the realm of Architectural design.
建筑设计认知进化计算中的模糊神经树
提出了一种新的模糊神经树(FNT)。每个树节点都使用高斯函数作为模糊隶属函数,因此该方法唯一地与模糊隶属的概率和可能性解释保持一致。它以规则链的形式在神经结构中提供了一种模糊逻辑运算,提出了加权模糊逻辑与或运算的新概念。该树既可以由专家知识补充,也可以由模型形成的数据集补充。详细描述了FNT的各种潜在用途,其中需要复杂的建模和多目标优化。其中一个需求涉及设计认知的认知计算。建筑设计领域的计算机实验证明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信