Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, G. Sirakoulis
{"title":"Image Shifting Tracking Leveraging Memristive Devices","authors":"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, G. Sirakoulis","doi":"10.1109/mocast54814.2022.9837763","DOIUrl":null,"url":null,"abstract":"Unconventional circuits with built-in memory and computing functionalities are becoming the cornerstones of artificial intelligence (AI) at the edge. In the currently deployed systems, sensing and computing occur in separate physical locations, imposing a vast amount of data shuttling between the sensor module and the cloud-computing platforms. Regarding the acceleration of image processing at the edge, in this work, a memristive computing circuit has been designed. By exploiting the non-linear behavior and memory capabilities of memristor devices, a memristive circuit, capable of tracking the shifting of an image is proposed. The presented circuit design can be also combined with an array of sensors, aiming to implement a discrete image tracking module.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Unconventional circuits with built-in memory and computing functionalities are becoming the cornerstones of artificial intelligence (AI) at the edge. In the currently deployed systems, sensing and computing occur in separate physical locations, imposing a vast amount of data shuttling between the sensor module and the cloud-computing platforms. Regarding the acceleration of image processing at the edge, in this work, a memristive computing circuit has been designed. By exploiting the non-linear behavior and memory capabilities of memristor devices, a memristive circuit, capable of tracking the shifting of an image is proposed. The presented circuit design can be also combined with an array of sensors, aiming to implement a discrete image tracking module.