A novel method for automatic ICi selection in EEG signals

V. Akhila, C. Arunvinodh, V. Athira, K. Faby
{"title":"A novel method for automatic ICi selection in EEG signals","authors":"V. Akhila, C. Arunvinodh, V. Athira, K. Faby","doi":"10.1109/ISCO.2016.7727065","DOIUrl":null,"url":null,"abstract":"Advancements in EEG signal processing yields tremendous research in the field of BCI. Online based BCI fails in selecting independent components from different brain regions. Unknown order of the independent components and the random weight matrix used in repeated ICA trainings may leads to a different ICA result. This paper highlights a new idea of automatic ICi selection by taking an average of particular brain regions which resolves the problem of online BCI. The proposed method has been tested in EEG datasets such as .SET, .SMA which succeeds in selecting reference ICi.","PeriodicalId":320699,"journal":{"name":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2016.7727065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in EEG signal processing yields tremendous research in the field of BCI. Online based BCI fails in selecting independent components from different brain regions. Unknown order of the independent components and the random weight matrix used in repeated ICA trainings may leads to a different ICA result. This paper highlights a new idea of automatic ICi selection by taking an average of particular brain regions which resolves the problem of online BCI. The proposed method has been tested in EEG datasets such as .SET, .SMA which succeeds in selecting reference ICi.
一种新的脑电信号自动选择方法
随着脑电信号处理技术的发展,脑机接口领域的研究日益深入。基于在线的BCI无法从不同的大脑区域中选择独立的组件。在重复ICA训练中使用的独立分量的未知阶数和随机权矩阵可能导致不同的ICA结果。本文提出了一种通过对特定脑区取平均值来自动选择脑机接口的新思路,解决了在线脑机接口问题。该方法在. set、. sma等脑电数据集上进行了测试,成功地选择了参考信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信