VIPTRA: Visualization and Interactive Processing on Big Trajectory Data

Xin Ding, R. Chen, Lu Chen, Yunjun Gao, Christian S. Jensen
{"title":"VIPTRA: Visualization and Interactive Processing on Big Trajectory Data","authors":"Xin Ding, R. Chen, Lu Chen, Yunjun Gao, Christian S. Jensen","doi":"10.1109/MDM.2018.00055","DOIUrl":null,"url":null,"abstract":"Massive trajectory data is being collected and used widely in many applications such as transportation, location-based services, and urban computing. As a result, abundant methods and systems have been proposed for managing and processing trajectory data. However, it remains difficult for users to interact well with data management and processing, due to the lack of efficient data processing methods and effective visualization techniques for big trajectory data. In this demonstration, we present a new framework, VIPTRA, to process big trajectory data visually and interactively. VIPTRA builds upon UlTraMan, a distributed in-memory system for big trajectory data, and thus, it takes advantage of its capability of high performance. The demonstration shows the efficiency of data processing and user-friendly visualization and interaction techniques provided in VIPTRA, via several scenarios of visual analysis and trajectory editing tasks.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Massive trajectory data is being collected and used widely in many applications such as transportation, location-based services, and urban computing. As a result, abundant methods and systems have been proposed for managing and processing trajectory data. However, it remains difficult for users to interact well with data management and processing, due to the lack of efficient data processing methods and effective visualization techniques for big trajectory data. In this demonstration, we present a new framework, VIPTRA, to process big trajectory data visually and interactively. VIPTRA builds upon UlTraMan, a distributed in-memory system for big trajectory data, and thus, it takes advantage of its capability of high performance. The demonstration shows the efficiency of data processing and user-friendly visualization and interaction techniques provided in VIPTRA, via several scenarios of visual analysis and trajectory editing tasks.
VIPTRA:大轨迹数据的可视化和交互处理
大量的轨迹数据正在被收集并广泛应用于许多应用,如交通、基于位置的服务和城市计算。因此,人们提出了丰富的方法和系统来管理和处理弹道数据。然而,由于缺乏高效的数据处理方法和有效的大轨迹数据可视化技术,用户很难很好地与数据管理和处理进行交互。在这个演示中,我们提出了一个新的框架,VIPTRA,以可视化和交互式的方式处理大轨迹数据。VIPTRA建立在一个用于大轨迹数据的分布式内存系统UlTraMan的基础上,因此,它利用了其高性能的能力。通过可视化分析和轨迹编辑任务的几个场景,演示了VIPTRA提供的数据处理效率和用户友好的可视化和交互技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信