Efficient robust predictive control

B. Kouvaritakis, J. Rossiter, J. Schuurmans
{"title":"Efficient robust predictive control","authors":"B. Kouvaritakis, J. Rossiter, J. Schuurmans","doi":"10.1109/ACC.1999.786372","DOIUrl":null,"url":null,"abstract":"Invariant sets can be used in conjunction with known control laws to guarantee convergence of linear time varying (LTV) or uncertain systems with constraints. However, invariant sets are often associated with fixed control laws and hence can be limited in size by constraints. It is shown how to utilise degrees of freedom in the transient predictions in order to enlarge the invariant set and so widen the applicability of the convergence proof, for a given control law. The same degrees of freedom allow for computationally efficient and systematic performance optimisation.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"468","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 468

Abstract

Invariant sets can be used in conjunction with known control laws to guarantee convergence of linear time varying (LTV) or uncertain systems with constraints. However, invariant sets are often associated with fixed control laws and hence can be limited in size by constraints. It is shown how to utilise degrees of freedom in the transient predictions in order to enlarge the invariant set and so widen the applicability of the convergence proof, for a given control law. The same degrees of freedom allow for computationally efficient and systematic performance optimisation.
高效鲁棒预测控制
不变量集可以与已知的控制律结合使用,以保证线性时变(LTV)或不确定系统的收敛性。然而,不变集通常与固定的控制律相关联,因此可以通过约束限制大小。给出了如何利用暂态预测中的自由度来扩大不变量集,从而扩大收敛证明对给定控制律的适用性。相同的自由度允许计算效率和系统性能优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信