Text Recommendation Algorithm Fused with BERT Semantic Information

Xingyun Xie, Zifeng Ren, Yuming Gu, Chengwen Zhang
{"title":"Text Recommendation Algorithm Fused with BERT Semantic Information","authors":"Xingyun Xie, Zifeng Ren, Yuming Gu, Chengwen Zhang","doi":"10.1145/3507548.3507582","DOIUrl":null,"url":null,"abstract":"Faced with the problem of text recommendation with massive data on the Internet, the use of a recommendation method based on deep learning combined with semantic information will improve the accuracy of the recommendation results. Therefore, we propose a HyReB (Hybrid Recommendation algorithm combining BERT and CNN network). The algorithm HyReB uses the BERT word vector as the input of the CNN network and incorporates external semantic information in features extraction and topic classification. Then we combine BERT and TextRank algorithms to extract text keywords and calculate the BERT word vector similarity of topic word. Finally, we do the weighted calculation of the label proportion of the recommended text and the similarity of the topic word vector to make the text top-N recommendation. The HyReB algorithm makes user interest extraction more refined and incorporates BERT semantic information into the text recommendation. Experiments show that the feature extraction of HyReB is more accurate and has a better recommendation effect when performing small-scale accurate text recommendation.","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Faced with the problem of text recommendation with massive data on the Internet, the use of a recommendation method based on deep learning combined with semantic information will improve the accuracy of the recommendation results. Therefore, we propose a HyReB (Hybrid Recommendation algorithm combining BERT and CNN network). The algorithm HyReB uses the BERT word vector as the input of the CNN network and incorporates external semantic information in features extraction and topic classification. Then we combine BERT and TextRank algorithms to extract text keywords and calculate the BERT word vector similarity of topic word. Finally, we do the weighted calculation of the label proportion of the recommended text and the similarity of the topic word vector to make the text top-N recommendation. The HyReB algorithm makes user interest extraction more refined and incorporates BERT semantic information into the text recommendation. Experiments show that the feature extraction of HyReB is more accurate and has a better recommendation effect when performing small-scale accurate text recommendation.
融合BERT语义信息的文本推荐算法
面对互联网上海量数据的文本推荐问题,采用基于深度学习与语义信息相结合的推荐方法,将会提高推荐结果的准确性。因此,我们提出了一种HyReB(结合BERT和CNN网络的混合推荐算法)。HyReB算法使用BERT词向量作为CNN网络的输入,并在特征提取和主题分类中加入外部语义信息。然后结合BERT和TextRank算法提取文本关键词,计算主题词的BERT词向量相似度。最后,对被推荐文本的标签比例和主题词向量的相似度进行加权计算,得到top-N的推荐文本。HyReB算法使用户兴趣提取更加精细,并将BERT语义信息融入到文本推荐中。实验表明,在进行小规模的精确文本推荐时,HyReB的特征提取更加准确,推荐效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信