Robust Control in State Space: An Approach via the Krasovskii Theorem

H.X. Hu, N. Loh
{"title":"Robust Control in State Space: An Approach via the Krasovskii Theorem","authors":"H.X. Hu, N. Loh","doi":"10.23919/ACC.1989.4790442","DOIUrl":null,"url":null,"abstract":"The problem of robust control with structured perturbations is addressed in state space. Measures of preserving the closed-loop system stability for a given stabilizing controller with respect to parameter variations are determined in the parameter space using the Krasovskii stability theorem. Since the measures are directly given in terms of the nominal system matrix and perturbation structure matrix, solving the Lyapunov matrix equation required in approaches recently reported in the literature, is avoided. Based on the robust stability measure defined, an iterative design procedure is proposed to determine a robust controller for the perturbed system with prescribed range of perturbations. Numerical examples are also provided to illustrate the effectiveness of the results developed.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1989.4790442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of robust control with structured perturbations is addressed in state space. Measures of preserving the closed-loop system stability for a given stabilizing controller with respect to parameter variations are determined in the parameter space using the Krasovskii stability theorem. Since the measures are directly given in terms of the nominal system matrix and perturbation structure matrix, solving the Lyapunov matrix equation required in approaches recently reported in the literature, is avoided. Based on the robust stability measure defined, an iterative design procedure is proposed to determine a robust controller for the perturbed system with prescribed range of perturbations. Numerical examples are also provided to illustrate the effectiveness of the results developed.
状态空间中的鲁棒控制:一种基于Krasovskii定理的方法
在状态空间中研究了具有结构扰动的鲁棒控制问题。利用克拉索夫斯基稳定性定理,在参数空间中确定了给定稳定控制器相对于参数变化保持闭环系统稳定性的措施。由于度量是直接用标称系统矩阵和摄动结构矩阵给出的,因此避免了在最近文献报道的方法中需要求解Lyapunov矩阵方程。在定义鲁棒稳定性测度的基础上,提出了一种迭代设计方法来确定给定摄动范围的系统的鲁棒控制器。数值算例说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信