Data marshaling for multi-core architectures

M. A. Suleman, O. Mutlu, José A. Joao, Khubaib, Y. Patt
{"title":"Data marshaling for multi-core architectures","authors":"M. A. Suleman, O. Mutlu, José A. Joao, Khubaib, Y. Patt","doi":"10.1145/1815961.1816020","DOIUrl":null,"url":null,"abstract":"Previous research has shown that Staged Execution (SE), i.e., dividing a program into segments and executing each segment at the core that has the data and/or functionality to best run that segment, can improve performance and save power. However, SE's benefit is limited because most segments access inter-segment data, i.e., data generated by the previous segment. When consecutive segments run on different cores, accesses to inter-segment data incur cache misses, thereby reducing performance. This paper proposes Data Marshaling (DM), a new technique to eliminate cache misses to inter-segment data. DM uses profiling to identify instructions that generate inter-segment data, and adds only 96 bytes/core of storage overhead. We show that DM significantly improves the performance of two promising Staged Execution models, Accelerated Critical Sections and producer-consumer pipeline parallelism, on both homogeneous and heterogeneous multi-core systems. In both models, DM can achieve almost all of the potential of ideally eliminating cache misses to inter-segment data. DM's performance benefit increases with the number of cores.","PeriodicalId":132033,"journal":{"name":"Proceedings of the 37th annual international symposium on Computer architecture","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th annual international symposium on Computer architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1815961.1816020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Previous research has shown that Staged Execution (SE), i.e., dividing a program into segments and executing each segment at the core that has the data and/or functionality to best run that segment, can improve performance and save power. However, SE's benefit is limited because most segments access inter-segment data, i.e., data generated by the previous segment. When consecutive segments run on different cores, accesses to inter-segment data incur cache misses, thereby reducing performance. This paper proposes Data Marshaling (DM), a new technique to eliminate cache misses to inter-segment data. DM uses profiling to identify instructions that generate inter-segment data, and adds only 96 bytes/core of storage overhead. We show that DM significantly improves the performance of two promising Staged Execution models, Accelerated Critical Sections and producer-consumer pipeline parallelism, on both homogeneous and heterogeneous multi-core systems. In both models, DM can achieve almost all of the potential of ideally eliminating cache misses to inter-segment data. DM's performance benefit increases with the number of cores.
多核架构的数据封送处理
先前的研究表明,分阶段执行(SE),即将程序划分为多个段,并在具有最佳运行该段的数据和/或功能的核心部分执行每个段,可以提高性能并节省电力。然而,SE的好处是有限的,因为大多数段访问的是段间数据,即前一个段生成的数据。当连续的段在不同的核上运行时,访问段间数据会导致缓存丢失,从而降低性能。本文提出了一种消除段间数据缓存丢失的新技术——数据封送(DM)。DM使用分析来识别生成段间数据的指令,并且只增加96字节/核的存储开销。我们表明,DM显著提高了两个有前途的阶段执行模型的性能,加速临界段和生产者-消费者管道并行,在同质和异构多核系统上。在这两种模型中,DM几乎可以实现消除段间数据缓存丢失的所有潜力。DM的性能优势随着内核数量的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信