Vehicle path planning with maximizing safe margin for driving using Lagrange multipliers

Quoc Huy Do, Hossein Tehrani Niknejad, Keisuke Yoneda, Ryohei Sakai, S. Mita
{"title":"Vehicle path planning with maximizing safe margin for driving using Lagrange multipliers","authors":"Quoc Huy Do, Hossein Tehrani Niknejad, Keisuke Yoneda, Ryohei Sakai, S. Mita","doi":"10.1109/IVS.2013.6629466","DOIUrl":null,"url":null,"abstract":"We propose a path planning method for autonomous vehicle in cluttered environment with narrow passages. Different from traditional methods, we use a learning approach based on RBF kernel SVM to maximize the safety margin for driving. We use the Lagrange multipliers of SVM dual model to find most critical points in map and generate optimized hyperplane for path. The method is implemented on autonomous vehicle for outdoor parking and compared to well-known method in autonomous vehicle literatures. The experiments prove that the method is able to generate smooth and safe path in shorter time compared to other methods.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a path planning method for autonomous vehicle in cluttered environment with narrow passages. Different from traditional methods, we use a learning approach based on RBF kernel SVM to maximize the safety margin for driving. We use the Lagrange multipliers of SVM dual model to find most critical points in map and generate optimized hyperplane for path. The method is implemented on autonomous vehicle for outdoor parking and compared to well-known method in autonomous vehicle literatures. The experiments prove that the method is able to generate smooth and safe path in shorter time compared to other methods.
使用拉格朗日乘法器进行安全裕度最大化的车辆路径规划
提出了一种自动驾驶汽车在杂乱狭窄环境下的路径规划方法。与传统方法不同,我们采用基于RBF核支持向量机的学习方法来最大化驾驶的安全裕度。我们利用支持向量机对偶模型的拉格朗日乘子来寻找地图上最关键的点,并生成路径的优化超平面。将该方法应用于室外停车的自动驾驶汽车上,并与自动驾驶汽车文献中常用的方法进行了比较。实验证明,与其他方法相比,该方法能够在更短的时间内生成光滑安全的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信