P. Galanakou, T. Leventouri, A. Georgakilas, G. Kalantzis
{"title":"A parallelized GPU-based simulating annealing algorithm for intensity modulated radiation therapy optimization","authors":"P. Galanakou, T. Leventouri, A. Georgakilas, G. Kalantzis","doi":"10.1109/SNPD.2017.8022744","DOIUrl":null,"url":null,"abstract":"Intensity modulated radiation therapy (IMRT) exhibits the ability to deliver the prescribed dose to the planning target volume (PTV), while minimizing the delivered dose to the organs at risk (OARs). Metaheuristic algorithms, among them the simulating annealing algorithm (SAA), have been proposed in the past for optimization of IMRT. Despite the advantage of the SAA to be a global optimizer, IMRT optimization is an extensive computational task due to the large scale of the optimization variables. Therefore stochastic algorithms, such as the SAA, require significant computational resources. In an effort to elucidate the performance improvement of the SAA in highly dimensional optimization tasks, such as the IMRT optimization, we introduce for the first time to our best knowledge a parallel graphic processing unit (GPU)-based SAA developed in MATLAB platform and compliant with the computational environment for radiotherapy research (CERR) for IMRT treatment planning. Our strategy was firstly to identify the major “bottlenecks” of our code and secondly to parallelize those on the GPU accordingly. Performance tests were conducted on four different GPU cards in comparison to a serial version of the algorithm executed on a CPU. Our studies have shown a gradual increase of the speedup factor as a function of the number of beamlets for all four GPUs. Particularly, a maximum speedup factor of ∼33 was achieved when the K40m card was utilized.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intensity modulated radiation therapy (IMRT) exhibits the ability to deliver the prescribed dose to the planning target volume (PTV), while minimizing the delivered dose to the organs at risk (OARs). Metaheuristic algorithms, among them the simulating annealing algorithm (SAA), have been proposed in the past for optimization of IMRT. Despite the advantage of the SAA to be a global optimizer, IMRT optimization is an extensive computational task due to the large scale of the optimization variables. Therefore stochastic algorithms, such as the SAA, require significant computational resources. In an effort to elucidate the performance improvement of the SAA in highly dimensional optimization tasks, such as the IMRT optimization, we introduce for the first time to our best knowledge a parallel graphic processing unit (GPU)-based SAA developed in MATLAB platform and compliant with the computational environment for radiotherapy research (CERR) for IMRT treatment planning. Our strategy was firstly to identify the major “bottlenecks” of our code and secondly to parallelize those on the GPU accordingly. Performance tests were conducted on four different GPU cards in comparison to a serial version of the algorithm executed on a CPU. Our studies have shown a gradual increase of the speedup factor as a function of the number of beamlets for all four GPUs. Particularly, a maximum speedup factor of ∼33 was achieved when the K40m card was utilized.