Machine-learning recognition of light orbital-angular-momentum superpositions

B. P. da Silva, B. Marques, R. B. Rodrigues, P. H. Ribeiro, A. Khoury
{"title":"Machine-learning recognition of light orbital-angular-momentum superpositions","authors":"B. P. da Silva, B. Marques, R. B. Rodrigues, P. H. Ribeiro, A. Khoury","doi":"10.1103/PhysRevA.103.063704","DOIUrl":null,"url":null,"abstract":"We developed a method to characterize arbitrary superpositions of light orbital angular momentum (OAM) with high fidelity by using astigmatic tomography and machine learning processing. In order to define each superposition unequivocally, we combine two intensity measurements. The first one is the direct image of the input beam, which cannot distinguish between opposite OAM components. This ambiguity is removed by a second image obtained after astigmatic transformation of the input beam. Samples of these image pairs are used to train a convolution neural network and achieve high fidelity recognition of arbitrary OAM superpositions with dimension up to five.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.063704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We developed a method to characterize arbitrary superpositions of light orbital angular momentum (OAM) with high fidelity by using astigmatic tomography and machine learning processing. In order to define each superposition unequivocally, we combine two intensity measurements. The first one is the direct image of the input beam, which cannot distinguish between opposite OAM components. This ambiguity is removed by a second image obtained after astigmatic transformation of the input beam. Samples of these image pairs are used to train a convolution neural network and achieve high fidelity recognition of arbitrary OAM superpositions with dimension up to five.
轻轨道-角动量叠加的机器学习识别
我们开发了一种利用像散层析成像和机器学习处理的方法来高保真地表征任意叠加的轻轨道角动量(OAM)。为了明确地定义每个叠加,我们将两个强度测量结合起来。第一种是输入光束的直接像,它不能区分相对的OAM分量。这种模糊性通过输入光束的像散变换后获得的第二图像来消除。利用这些图像对的样本训练卷积神经网络,实现对任意5维OAM叠加的高保真识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信