Acoustic Signature Based Intelligent Health Monitoring of Air Compressors with Selected Features

N. Verma, Tarun Maini, A. Salour
{"title":"Acoustic Signature Based Intelligent Health Monitoring of Air Compressors with Selected Features","authors":"N. Verma, Tarun Maini, A. Salour","doi":"10.1109/ITNG.2012.67","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction and identification of relevant features are important for the classification accuracy. Selecting large number of features increases computational complexity whereas selection of too few features may not contain sufficient information required for the classification. This paper presents the comparative performance of different feature selection techniques namely Principal Component Analysis (PCA), Independent Component Analysis (ICA), Mutual Information (MI) methods: MIFS, mRMR, NMIFS, MIFS-U, and Bhattacharyya Distance (BD) in order to select optimal feature set for attaining better classification accuracy. With the results of comparative performance analysis one can get valuable insight about the effectiveness of different feature selection techniques, which in turn allows us to use the most suitable feature selection technique for enhanced fault diagnosis using CBM of air compressor.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Dimensionality reduction and identification of relevant features are important for the classification accuracy. Selecting large number of features increases computational complexity whereas selection of too few features may not contain sufficient information required for the classification. This paper presents the comparative performance of different feature selection techniques namely Principal Component Analysis (PCA), Independent Component Analysis (ICA), Mutual Information (MI) methods: MIFS, mRMR, NMIFS, MIFS-U, and Bhattacharyya Distance (BD) in order to select optimal feature set for attaining better classification accuracy. With the results of comparative performance analysis one can get valuable insight about the effectiveness of different feature selection techniques, which in turn allows us to use the most suitable feature selection technique for enhanced fault diagnosis using CBM of air compressor.
基于声学特征的选定特征空气压缩机智能健康监测
降维和相关特征的识别对分类精度至关重要。选择大量的特征增加了计算复杂度,而选择太少的特征可能不包含足够的分类所需的信息。本文介绍了主成分分析(PCA)、独立成分分析(ICA)、互信息(MI)方法MIFS、mRMR、NMIFS、MIFS- u和Bhattacharyya Distance (BD)等不同特征选择技术的性能比较,以选择最优特征集以获得更好的分类精度。通过比较性能分析的结果,可以对不同特征选择技术的有效性有更有价值的认识,从而使我们能够使用最合适的特征选择技术来利用CBM对空压机进行增强故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信