Quantitative-Morphological and Cytological Analyses in Leukemia

C. Lantos, S. Kornblau, A. Qutub
{"title":"Quantitative-Morphological and Cytological Analyses in Leukemia","authors":"C. Lantos, S. Kornblau, A. Qutub","doi":"10.5772/INTECHOPEN.73675","DOIUrl":null,"url":null,"abstract":"Leukemia, a blood cancer originating in the bone marrow, presents as a heterogeneous disease with highly variable survival rates. Leukemia is classified into major types based on the rate of cancerous cell growth and cell lineage: chronic or acute and myeloid or lymphoid leukemia. Histological and cytological analysis of the peripheral blood and the bone marrow can classify these major leukemia categories. However, histological analyses of patient biopsies and cytological microscopic assessment of blood and bone marrow smears are insufficient to diagnose leukemia subtypes and to direct therapy. Hence, more expensive and time-consuming diagnostic tools routinely complement histological-cytological analysis during a patient ’ s diagnosis. To extract more accurate and detailed information from patient tissue samples, digital pathology is emerging as a powerful tool to enhance biopsy- and smear-based decisions. Furthermore, digital pathology methods integrated with advances in machine learning enable new diagnos- tic features from leukemia patients ’ histological and cytological slides and optimize patient classification, thus providing a cheaper, more robust, and faster diagnostic tool than current standards. This review summarizes emerging approaches to automatically diagnose leukemia from morphological and cytological-histological analyses.","PeriodicalId":114649,"journal":{"name":"Hematology - Latest Research and Clinical Advances","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology - Latest Research and Clinical Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Leukemia, a blood cancer originating in the bone marrow, presents as a heterogeneous disease with highly variable survival rates. Leukemia is classified into major types based on the rate of cancerous cell growth and cell lineage: chronic or acute and myeloid or lymphoid leukemia. Histological and cytological analysis of the peripheral blood and the bone marrow can classify these major leukemia categories. However, histological analyses of patient biopsies and cytological microscopic assessment of blood and bone marrow smears are insufficient to diagnose leukemia subtypes and to direct therapy. Hence, more expensive and time-consuming diagnostic tools routinely complement histological-cytological analysis during a patient ’ s diagnosis. To extract more accurate and detailed information from patient tissue samples, digital pathology is emerging as a powerful tool to enhance biopsy- and smear-based decisions. Furthermore, digital pathology methods integrated with advances in machine learning enable new diagnos- tic features from leukemia patients ’ histological and cytological slides and optimize patient classification, thus providing a cheaper, more robust, and faster diagnostic tool than current standards. This review summarizes emerging approaches to automatically diagnose leukemia from morphological and cytological-histological analyses.
白血病的定量形态学和细胞学分析
白血病是一种起源于骨髓的血癌,是一种异质性疾病,生存率差异很大。根据癌细胞的生长速度和细胞谱系,白血病分为慢性或急性、髓性或淋巴性白血病。外周血和骨髓的组织学和细胞学分析可以将这些主要的白血病分类。然而,患者活检的组织学分析和血液和骨髓涂片的细胞学显微镜评估不足以诊断白血病亚型和指导治疗。因此,在患者的诊断过程中,更昂贵和耗时的诊断工具通常是对组织学-细胞学分析的补充。为了从患者组织样本中提取更准确和详细的信息,数字病理学正在成为一种强大的工具,以增强基于活检和涂片的决策。此外,数字病理学方法与机器学习的进步相结合,可以从白血病患者的组织学和细胞学切片中获得新的诊断特征,并优化患者分类,从而提供比当前标准更便宜,更强大,更快速的诊断工具。本文综述了从形态学和细胞学-组织学分析自动诊断白血病的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信