Visual and interactive analysis of a large collection of open data with the relative neighborhood graph

Tianyang Liu, F. Bouali, G. Venturini
{"title":"Visual and interactive analysis of a large collection of open data with the relative neighborhood graph","authors":"Tianyang Liu, F. Bouali, G. Venturini","doi":"10.1145/2493102.2493119","DOIUrl":null,"url":null,"abstract":"We deal in this paper with the problem of creating an interactive and visual map for a large collection of Open datasets. We first describe how to define a representation space for such data. We use text mining techniques to create features. Then, with a similarity measure between Open datasets, we use the Relative Neighbors method for building a proximity graph between datasets. We use a force-directed layout method to visualize the graph (Tulip Software). We present the results with a collection of 300,000 datasets from the French Open data web site, in which the display of the graph is limited to 150,000 datasets. We study the discovered clusters and we show how they can be used to browse this large collection.","PeriodicalId":360638,"journal":{"name":"International Symposiu on Visual Information Communication and Interaction","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposiu on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493102.2493119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We deal in this paper with the problem of creating an interactive and visual map for a large collection of Open datasets. We first describe how to define a representation space for such data. We use text mining techniques to create features. Then, with a similarity measure between Open datasets, we use the Relative Neighbors method for building a proximity graph between datasets. We use a force-directed layout method to visualize the graph (Tulip Software). We present the results with a collection of 300,000 datasets from the French Open data web site, in which the display of the graph is limited to 150,000 datasets. We study the discovered clusters and we show how they can be used to browse this large collection.
使用相对邻域图对大量开放数据进行可视化和交互式分析
在本文中,我们处理的问题是为大量开放数据集创建一个交互式和可视化的地图。我们首先描述如何为这些数据定义一个表示空间。我们使用文本挖掘技术来创建特征。然后,通过开放数据集之间的相似性度量,我们使用相对邻居方法在数据集之间构建接近图。我们使用力定向布局方法来可视化图形(郁金香软件)。我们使用来自法国网球公开赛数据网站的300,000个数据集来展示结果,其中图形的显示仅限于150,000个数据集。我们将研究发现的集群,并展示如何使用它们来浏览这个大型集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信