Assessing Uncertainty from Point Forecasts

Anil Gaba, Dana G. Popescu, Zhi Chen
{"title":"Assessing Uncertainty from Point Forecasts","authors":"Anil Gaba, Dana G. Popescu, Zhi Chen","doi":"10.2139/ssrn.2807764","DOIUrl":null,"url":null,"abstract":"The paper develops a model for combining point forecasts into a predictive distribution for a variable of interest. Our approach allows for point forecasts to be correlated and admits uncertainty on the distribution parameters given the forecasts. Further, it provides an easy way to compute an augmentation factor needed to equate the dispersion of the point forecasts to that of the predictive distribution, which depends on the correlation between the point forecasts and on the number of forecasts. We show that ignoring dependence or parameter uncertainty can lead to assuming an unrealistically narrow predictive distribution. We further illustrate the implications in a newsvendor context, where our model leads to an order quantity that has higher variance but is biased in the less costly direction, and generates an increase in expected profit relative to other methods. The e-companion is available at https://doi.org/10.1287/mnsc.2017.2936. This paper was accepted by Vishal Gaur, operations management.","PeriodicalId":365198,"journal":{"name":"INSEAD: Decision Science (Topic)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INSEAD: Decision Science (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2807764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper develops a model for combining point forecasts into a predictive distribution for a variable of interest. Our approach allows for point forecasts to be correlated and admits uncertainty on the distribution parameters given the forecasts. Further, it provides an easy way to compute an augmentation factor needed to equate the dispersion of the point forecasts to that of the predictive distribution, which depends on the correlation between the point forecasts and on the number of forecasts. We show that ignoring dependence or parameter uncertainty can lead to assuming an unrealistically narrow predictive distribution. We further illustrate the implications in a newsvendor context, where our model leads to an order quantity that has higher variance but is biased in the less costly direction, and generates an increase in expected profit relative to other methods. The e-companion is available at https://doi.org/10.1287/mnsc.2017.2936. This paper was accepted by Vishal Gaur, operations management.
从点预测评估不确定性
本文开发了一个模型,用于将点预测结合到感兴趣变量的预测分布中。我们的方法允许点预测是相关的,并承认给定预测的分布参数的不确定性。此外,它提供了一种简单的方法来计算一个增加因子,该因子需要将点预测的离散度等同于预测分布的离散度,这取决于点预测和预测数量之间的相关性。我们表明,忽略依赖性或参数不确定性可能导致假设一个不切实际的狭窄的预测分布。我们进一步说明了在报摊上下文中的含义,其中我们的模型导致订单数量具有更高的方差,但偏向于成本较低的方向,并且相对于其他方法产生预期利润的增加。电子伴侣可在https://doi.org/10.1287/mnsc.2017.2936上获得。本文被运营管理专业的Vishal Gaur接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信