Chengbo Wang, Xinyu Zhang, Hongbo Gao, Huiping Su, Kangjie Zheng, Weisong Wang
{"title":"Efficient Reinforcement Learning for Autonomous Ship Collision Avoidance under Learning Experience Reuse","authors":"Chengbo Wang, Xinyu Zhang, Hongbo Gao, Huiping Su, Kangjie Zheng, Weisong Wang","doi":"10.1109/ICUS55513.2022.9986793","DOIUrl":null,"url":null,"abstract":"In this paper, a learning experience reuse - reinforcement learning collision avoidance (LER-RLCA) method is proposed, which can synthesize near-optimal collision avoidance policy with efficient sampling and good seamanship, to solve the local safety sailing of autonomous ship in a multi-obstacle environment. Lying on the general reinforcement learning (RL), using learning experience reuse, the hidden features of historical training data were mined. Meanwhile, a new reward function combining external revenue signal with internal incentive signal was designed to encourage search the environment with a low probability of state transition. We further applied LER-RLCA algorithm to the simulation of autonomous ship collision avoidance. The results show that the proposed LER-RLCA algorithm can well realize the collision-free and safe navigation of autonomous ships, to avoid falling into local iteration, greatly improve the convergence speed of the algorithm, and improve the performance of online collision avoidance decision-making.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a learning experience reuse - reinforcement learning collision avoidance (LER-RLCA) method is proposed, which can synthesize near-optimal collision avoidance policy with efficient sampling and good seamanship, to solve the local safety sailing of autonomous ship in a multi-obstacle environment. Lying on the general reinforcement learning (RL), using learning experience reuse, the hidden features of historical training data were mined. Meanwhile, a new reward function combining external revenue signal with internal incentive signal was designed to encourage search the environment with a low probability of state transition. We further applied LER-RLCA algorithm to the simulation of autonomous ship collision avoidance. The results show that the proposed LER-RLCA algorithm can well realize the collision-free and safe navigation of autonomous ships, to avoid falling into local iteration, greatly improve the convergence speed of the algorithm, and improve the performance of online collision avoidance decision-making.