{"title":"Optimal control strategies for oil production under gas coning conditions","authors":"J. Maree, L. Imsland","doi":"10.1109/CCA.2014.6981401","DOIUrl":null,"url":null,"abstract":"Gas coning, which can lead to gas breakthrough in thin oil-rim reservoir fields, may deteriorate economics in oil production. This work reports on optimal control policies to be considered for short-term oil production optimization under gas coning conditions. These policies, incorporating an oil-rate dependent Gas-Oil ratio model, are formulated as an optimal control problem which optimize the oil production rate, subject to gas processing capacity constraints. The result thereof is implemented in a closed-loop receding horizon control policy. Control philosophies investigated for increased oil production optimization include cyclic oil production shut-in at the vicinity of gas breakthrough (limiting the economic-deteriorating effects of excessive gas production, given gas processing constraints), and, steady oil production at-or after- the point of gas breakthrough. Near-well gas coning analysis reveals that gas coning dynamics may indicate which control philosophy (cyclic or steady oil production after process transients) may be optimal during closed-loop process operation.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Gas coning, which can lead to gas breakthrough in thin oil-rim reservoir fields, may deteriorate economics in oil production. This work reports on optimal control policies to be considered for short-term oil production optimization under gas coning conditions. These policies, incorporating an oil-rate dependent Gas-Oil ratio model, are formulated as an optimal control problem which optimize the oil production rate, subject to gas processing capacity constraints. The result thereof is implemented in a closed-loop receding horizon control policy. Control philosophies investigated for increased oil production optimization include cyclic oil production shut-in at the vicinity of gas breakthrough (limiting the economic-deteriorating effects of excessive gas production, given gas processing constraints), and, steady oil production at-or after- the point of gas breakthrough. Near-well gas coning analysis reveals that gas coning dynamics may indicate which control philosophy (cyclic or steady oil production after process transients) may be optimal during closed-loop process operation.