Finding approximate nash equilibria of bimatrix games via payoff queries

John Fearnley, Rahul Savani
{"title":"Finding approximate nash equilibria of bimatrix games via payoff queries","authors":"John Fearnley, Rahul Savani","doi":"10.1145/2600057.2602847","DOIUrl":null,"url":null,"abstract":"We study the deterministic and randomized query complexity of finding approximate equilibria in a k x k bimatrix game. We show that the deterministic query complexity of finding an ε-Nash equilibrium when ε < 1/2 is Ω(k2), even in zero-one constant-sum games. In combination with previous results, this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a (3--√5/2 + ε)-Nash equilibrium using O(k . log k/ε2) payoff queries, which shows that the 1/2 barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an ε-WSNE of a zero-sum bimatrix game O(k . log k/ε4) payoff queries, and we then use this to obtain a randomized algorithm for finding a (2/3 + ε)-WSNE in a general bimatrix game using O(k . log k /ε2) payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require Omega(k2) payoff queries in order to find a 1/6k-Nash equilibrium, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study the deterministic and randomized query complexity of finding approximate equilibria in a k x k bimatrix game. We show that the deterministic query complexity of finding an ε-Nash equilibrium when ε < 1/2 is Ω(k2), even in zero-one constant-sum games. In combination with previous results, this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a (3--√5/2 + ε)-Nash equilibrium using O(k . log k/ε2) payoff queries, which shows that the 1/2 barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an ε-WSNE of a zero-sum bimatrix game O(k . log k/ε4) payoff queries, and we then use this to obtain a randomized algorithm for finding a (2/3 + ε)-WSNE in a general bimatrix game using O(k . log k /ε2) payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require Omega(k2) payoff queries in order to find a 1/6k-Nash equilibrium, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria.
通过收益查询找到双矩阵博弈的近似纳什均衡
研究了k × k双矩阵对策中求近似平衡点的确定性和随机查询复杂度问题。我们证明了当ε < 1/2时寻找ε-纳什均衡的确定性查询复杂度为Ω(k2),即使在零-一常和对策中也是如此。结合以前的结果,这提供了近似纳什均衡的确定性查询复杂性的完整表征。我们还研究了随机查询算法。我们给出了一个用O(k)求(3—√5/2 + ε)-纳什均衡的随机算法。Log k/ε2)回报查询,这表明确定性算法的1/2障碍可以通过随机化来打破。对于良好支持纳什均衡(WSNE),我们首先给出了一种求零和双矩阵对策O(k)的ε-WSNE的随机算法。log k/ε4)收益查询,然后我们使用它来获得一个随机算法,用于在使用O(k)的一般双矩阵博弈中找到(2/3 + ε)-WSNE。Log k /ε2)收益查询。最后,我们开始研究双矩阵博弈背景下随机算法的下界,通过表明随机算法需要Omega(k2)支付查询才能找到1/6k-纳什均衡,即使在零和博弈中也是如此。特别是,这排除了查找精确纳什均衡的查询高效随机算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信