Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design

Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge
{"title":"Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design","authors":"Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge","doi":"10.1109/SmartGridComm.2018.8587472","DOIUrl":null,"url":null,"abstract":"The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.
基于仿真的大型混合智能电网通信系统参数优化框架设计
设计可靠、动态、容错的混合智能电网通信网络是自主电网面临的一个挑战。混合网络在不同的区域网络中使用不同的通信技术。提出了一种基于仿真的参数优化框架,对混合通信技术的参数进行优化,使网络性能达到最优。它由三个主要部分组成:一个用于加速一系列模拟的并行执行器;使用并行执行器在每一代上运行模拟的采样器;并提出了一种混合随机优化算法,用于混合设计和应用的可配置参数的整定。提出的混合元启发式优化算法将进化算法与梯度法相结合,快速实现近似全局最优解。采用三个优化测试函数来训练混合算法的可调参数。结果表明,所提出的参数优化框架可以帮助设计者在大规模宽带PLC-WiMAX混合智能电网通信网络中选择具有最优参数集的合适混合架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信