{"title":"Analisis Performa Algoritma K-NN Dan C4.5 Pada Klasifikasi Data Penduduk Miskin","authors":"Femi Dwi Astuti, M. Guntara","doi":"10.30872/JURTI.V2I2.1865","DOIUrl":null,"url":null,"abstract":"Status kemiskinan penduduk di Kecamatan Bantul diklasifikasikan melalui 11 aspek. Jumlah nilai dari keseluruhan aspek akan menentukan kelas kemiskinan diantaranya kelas miskin, sangat miskin dan rawan miskin. Klasifikasi dengan model tersebut membuat hasil pengelompokan kurang akurat sehingga perlu dicoba klasifikasi dengan model yang lain. Analisis performa klasifikasi data penduduk miskin pada penelitian ini dikerjakan menggunakan metode klasifikasi K-NN dan C4.5. Kedua algoritma klasifikasi akan dibandingkan performanya melalui uji akurasi, precision dan recall.Hasil analisis perbandingan performa algoritma K-NN dengan parameter setting k=1 memiliki performa yang paling baik dibandingkan dengan nilai k=10, 100, 1000 maupun algoritma C4.5. Hasil nilai Accuracy sebesar 94,71%, precision sebesar 84,96% dan recall sebesar 83,6%.","PeriodicalId":102981,"journal":{"name":"Jurnal Rekayasa Teknologi Informasi (JURTI)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Teknologi Informasi (JURTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/JURTI.V2I2.1865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Status kemiskinan penduduk di Kecamatan Bantul diklasifikasikan melalui 11 aspek. Jumlah nilai dari keseluruhan aspek akan menentukan kelas kemiskinan diantaranya kelas miskin, sangat miskin dan rawan miskin. Klasifikasi dengan model tersebut membuat hasil pengelompokan kurang akurat sehingga perlu dicoba klasifikasi dengan model yang lain. Analisis performa klasifikasi data penduduk miskin pada penelitian ini dikerjakan menggunakan metode klasifikasi K-NN dan C4.5. Kedua algoritma klasifikasi akan dibandingkan performanya melalui uji akurasi, precision dan recall.Hasil analisis perbandingan performa algoritma K-NN dengan parameter setting k=1 memiliki performa yang paling baik dibandingkan dengan nilai k=10, 100, 1000 maupun algoritma C4.5. Hasil nilai Accuracy sebesar 94,71%, precision sebesar 84,96% dan recall sebesar 83,6%.