SOC estimation of lithium battery based on fractional order model

Yuhang Chen, Yi Guo
{"title":"SOC estimation of lithium battery based on fractional order model","authors":"Yuhang Chen, Yi Guo","doi":"10.1117/12.2689433","DOIUrl":null,"url":null,"abstract":"For the purpose of the present study of lithium battery SOC estimation, fractional-order calculus theory and the fact that the real capacitance is fractional-order in nature mean that integer-order modeling yields incorrect methods. To improve the accuracy of lithium battery state-of-charge (SOC) estimation, a fractional-order traceless Kalman filter technique is proposed with a second-order RC fractional-order model, and a least-squares approach with a variable forgetting factor is utilized to determine battery parameters. The system gives real-time updates to the battery condition and settings through recursive estimation of state and parameter variables. Simulation analysis is performed using experimental data and UDDS operating parameters. The traceless Kalman filter method's simulated values are compared to the simulation outcomes. These results show that the method beats the integer-order traceless Kalman algorithm and that the maximum estimation error of battery SOC can be maintained below 2%. This proves that the proposed approach works as intended.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the purpose of the present study of lithium battery SOC estimation, fractional-order calculus theory and the fact that the real capacitance is fractional-order in nature mean that integer-order modeling yields incorrect methods. To improve the accuracy of lithium battery state-of-charge (SOC) estimation, a fractional-order traceless Kalman filter technique is proposed with a second-order RC fractional-order model, and a least-squares approach with a variable forgetting factor is utilized to determine battery parameters. The system gives real-time updates to the battery condition and settings through recursive estimation of state and parameter variables. Simulation analysis is performed using experimental data and UDDS operating parameters. The traceless Kalman filter method's simulated values are compared to the simulation outcomes. These results show that the method beats the integer-order traceless Kalman algorithm and that the maximum estimation error of battery SOC can be maintained below 2%. This proves that the proposed approach works as intended.
基于分数阶模型的锂电池荷电状态估计
对于目前锂电池SOC估计的研究,分数阶微积分理论和实际电容本质上是分数阶的事实意味着整阶建模产生了不正确的方法。为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于二阶RC分数阶模型的分数阶无迹卡尔曼滤波技术,并利用带可变遗忘因子的最小二乘法确定电池参数。该系统通过递归估计状态和参数变量,实时更新电池状态和设置。利用实验数据和UDDS工作参数进行仿真分析。将无迹卡尔曼滤波方法的仿真值与仿真结果进行了比较。结果表明,该方法优于整阶无迹卡尔曼算法,电池荷电状态的最大估计误差可保持在2%以下。这证明了所建议的方法按预期工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信