Digital twins of human corneal endothelium from generative adversarial networks

Eloi Dussy Lachaud, Andrew Caunes, G. Thuret, Y. Gavet
{"title":"Digital twins of human corneal endothelium from generative adversarial networks","authors":"Eloi Dussy Lachaud, Andrew Caunes, G. Thuret, Y. Gavet","doi":"10.1117/12.2586772","DOIUrl":null,"url":null,"abstract":"The human corneal endothelium, the posterior most layer of the cornea, is a monolayer of flat cells that are essential for maintening its transparency over time. Endothelial cells are easily visualized in patients using a specular microscope, a routine device, but accurate cell counting and cell morphometry determination has remained challenging since decades. The first automatic segmentations used mathematical morphology techniques, or the principles of the Fourier transform. In recent years, convolutional neural networks have further improved the results, but they need a large learning database, which takes a long time to collect. Thus, this work proposes a method for simulating digital twins of the images observed in specular microscopy, in order to enrich medical databases.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The human corneal endothelium, the posterior most layer of the cornea, is a monolayer of flat cells that are essential for maintening its transparency over time. Endothelial cells are easily visualized in patients using a specular microscope, a routine device, but accurate cell counting and cell morphometry determination has remained challenging since decades. The first automatic segmentations used mathematical morphology techniques, or the principles of the Fourier transform. In recent years, convolutional neural networks have further improved the results, but they need a large learning database, which takes a long time to collect. Thus, this work proposes a method for simulating digital twins of the images observed in specular microscopy, in order to enrich medical databases.
来自生成对抗网络的人角膜内皮的数字双胞胎
人类角膜内皮是角膜最后的一层,是一层扁平细胞,对于维持角膜的透明度至关重要。使用常规设备镜面显微镜可以很容易地观察到患者的内皮细胞,但几十年来,准确的细胞计数和细胞形态测定仍然具有挑战性。第一个自动分割使用数学形态学技术,或傅立叶变换原理。近年来,卷积神经网络对结果有了进一步的改进,但需要庞大的学习数据库,收集时间较长。因此,这项工作提出了一种模拟在镜面显微镜中观察到的图像的数字双胞胎的方法,以丰富医学数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信