A Bayesian approach for probabilistic streamline computation in uncertain flows

Wenbin He, Chun-Ming Chen, Xiaotong Liu, Han-Wei Shen
{"title":"A Bayesian approach for probabilistic streamline computation in uncertain flows","authors":"Wenbin He, Chun-Ming Chen, Xiaotong Liu, Han-Wei Shen","doi":"10.1109/PACIFICVIS.2016.7465273","DOIUrl":null,"url":null,"abstract":"Streamline-based techniques play an important role in visualizing and analyzing uncertain steady vector fields. It is a challenging problem to generate accurate streamlines in uncertain vector fields due to the global uncertainty transportation. In this work, we present a novel probabilistic method for streamline computation on uncertain steady vector fields using a Bayesian framework. In our framework, a streamline is modeled as a state space model which captures the spatial coherence of integration steps and uncertainty in local distributions using the conditional prior density and the likelihood function. To approximate the posterior distribution for all the possible traces originating from a given seed position, a set of weighted samples are iteratively updated from which streamlines with higher likelihood can be derived. We qualitatively and quantitatively compare our method with alternative methods on different types of flow field data sets. Our method can generate possible streamlines with higher certainty and hence more accurate flow traces.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Streamline-based techniques play an important role in visualizing and analyzing uncertain steady vector fields. It is a challenging problem to generate accurate streamlines in uncertain vector fields due to the global uncertainty transportation. In this work, we present a novel probabilistic method for streamline computation on uncertain steady vector fields using a Bayesian framework. In our framework, a streamline is modeled as a state space model which captures the spatial coherence of integration steps and uncertainty in local distributions using the conditional prior density and the likelihood function. To approximate the posterior distribution for all the possible traces originating from a given seed position, a set of weighted samples are iteratively updated from which streamlines with higher likelihood can be derived. We qualitatively and quantitatively compare our method with alternative methods on different types of flow field data sets. Our method can generate possible streamlines with higher certainty and hence more accurate flow traces.
不确定流中概率流线计算的贝叶斯方法
基于流线的技术在不确定稳定矢量场的可视化和分析中发挥着重要作用。由于不确定矢量场的全局不确定性传输,如何在不确定矢量场中生成精确的流线是一个具有挑战性的问题。在这项工作中,我们提出了一种新的概率方法,用于不确定稳定向量场的流线计算。在我们的框架中,流线被建模为一个状态空间模型,该模型使用条件先验密度和似然函数捕获积分步骤的空间相干性和局部分布中的不确定性。为了近似所有可能的轨迹的后验分布,从一个给定的种子位置出发,一组加权样本被迭代更新,从中可以得到具有更高可能性的流线。我们在不同类型的流场数据集上定性和定量地比较了我们的方法与其他方法。我们的方法可以生成具有更高确定性的可能流线,因此更精确的流动轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信