Non-commutative functional calculus in finite type I von Neumann algebras

Piotr Niemiec
{"title":"Non-commutative functional calculus in finite type I von Neumann algebras","authors":"Piotr Niemiec","doi":"10.3318/pria.2016.116.10","DOIUrl":null,"url":null,"abstract":"A certain class of matrix-valued Borel matrix functions is introduced and it is shown that all functions of that class naturally operate on any operator T in a finite type I von Neumann algebra M in a way such that uniformly bounded sequences f_1,f_2,... of functions that converge pointwise to 0 transform into sequences f_1[T],f_2[T],... of operators in M that converge to 0 in the *-strong operator topology. It is also demonstrated that the double *-commutant of any such operator T which acts on a separable Hilbert space coincides with the set of all operators of the form f[T] where f runs over all function from the aforementioned class. Some conclusions concerning so-called operator-spectra of such operators are drawn and a new variation of the spectral theorem for them is formulated.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2016.116.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A certain class of matrix-valued Borel matrix functions is introduced and it is shown that all functions of that class naturally operate on any operator T in a finite type I von Neumann algebra M in a way such that uniformly bounded sequences f_1,f_2,... of functions that converge pointwise to 0 transform into sequences f_1[T],f_2[T],... of operators in M that converge to 0 in the *-strong operator topology. It is also demonstrated that the double *-commutant of any such operator T which acts on a separable Hilbert space coincides with the set of all operators of the form f[T] where f runs over all function from the aforementioned class. Some conclusions concerning so-called operator-spectra of such operators are drawn and a new variation of the spectral theorem for them is formulated.
有限型von Neumann代数中的非交换泛函演算
引入了一类矩阵值Borel矩阵函数,并证明了该类函数的所有函数自然地作用于有限I型von Neumann代数M中的任意算子T,使得一致有界序列f_1,f_2,…点向收敛于0的函数变换成序列f_1[T],f_2[T],…在*强算子拓扑中M中收敛于0的算子的个数。还证明了任何这样的算子T作用于可分离希尔伯特空间的双*对易子与f[T]形式的所有算子的集合重合,其中f遍历上述类的所有函数。本文给出了关于这类算子的算子谱的一些结论,并给出了它们谱定理的一个新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信