Optimization of dynamic data structures in multimedia embedded systems using evolutionary computation

David Atienza Alonso, Christos Baloukas, Lazaros Papadopoulos, C. Poucet, S. Mamagkakis, J. Hidalgo, F. Catthoor, D. Soudris, J. Lanchares
{"title":"Optimization of dynamic data structures in multimedia embedded systems using evolutionary computation","authors":"David Atienza Alonso, Christos Baloukas, Lazaros Papadopoulos, C. Poucet, S. Mamagkakis, J. Hidalgo, F. Catthoor, D. Soudris, J. Lanchares","doi":"10.1145/1269843.1269849","DOIUrl":null,"url":null,"abstract":"Embedded consumer devices are increasing their capabilities and can now implement new multimedia applications reserved only for powerful desktops a few years ago. These applications share complex and intensive dynamic memory use. Thus, dynamic memory optimizations are a requirement when porting these applications. Within these optimizations, the refinement of the Dynamically (de)allocated Data Type (or DDT) implementations is one of the most important and difficult parts for an efficient mapping onto low-power embedded devices.\n In this paper, we describe a new automatic optimization approach for the DDTs of object-oriented multimedia applications. It is based on an analytical pre-characterization of the possible elementary DDT blocks, and a multi-objective genetic algorithm to explore the design space and to select the best implementation according to different optimization criteria (i.e., memory accesses, memory footprint and energy consumption). Our results in real-life multimedia applications show that the best implementations of DDTs can be obtained in an automated way in few hours, while typically designers would require days to find a suitable implementation, achieving important savings in exploration time with respect to other state-of-the-art heuristics-based optimization methods for this task.","PeriodicalId":375451,"journal":{"name":"Software and Compilers for Embedded Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1269843.1269849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Embedded consumer devices are increasing their capabilities and can now implement new multimedia applications reserved only for powerful desktops a few years ago. These applications share complex and intensive dynamic memory use. Thus, dynamic memory optimizations are a requirement when porting these applications. Within these optimizations, the refinement of the Dynamically (de)allocated Data Type (or DDT) implementations is one of the most important and difficult parts for an efficient mapping onto low-power embedded devices. In this paper, we describe a new automatic optimization approach for the DDTs of object-oriented multimedia applications. It is based on an analytical pre-characterization of the possible elementary DDT blocks, and a multi-objective genetic algorithm to explore the design space and to select the best implementation according to different optimization criteria (i.e., memory accesses, memory footprint and energy consumption). Our results in real-life multimedia applications show that the best implementations of DDTs can be obtained in an automated way in few hours, while typically designers would require days to find a suitable implementation, achieving important savings in exploration time with respect to other state-of-the-art heuristics-based optimization methods for this task.
基于进化计算的多媒体嵌入式系统动态数据结构优化
嵌入式消费设备正在增强其功能,现在可以实现几年前仅为功能强大的台式机保留的新的多媒体应用程序。这些应用程序共享复杂而密集的动态内存使用。因此,在移植这些应用程序时,动态内存优化是必需的。在这些优化中,动态(非)分配数据类型(DDT)实现的细化是高效映射到低功耗嵌入式设备的最重要和最困难的部分之一。本文提出了一种面向对象多媒体应用的ddt自动优化方法。它基于对可能的基本DDT块的分析预表征,并基于多目标遗传算法来探索设计空间,并根据不同的优化标准(即内存访问,内存占用和能耗)选择最佳实现。我们在现实生活中的多媒体应用程序中的结果表明,DDTs的最佳实现可以在几个小时内以自动化的方式获得,而通常设计人员需要几天才能找到合适的实现,相对于其他最先进的基于启发式的优化方法,这大大节省了探索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信