Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system
Mathieu St-Pierre, Mathieu, S. t-Pierre, D. Gingras
{"title":"Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system","authors":"Mathieu St-Pierre, Mathieu, S. t-Pierre, D. Gingras","doi":"10.1109/IVS.2004.1336492","DOIUrl":null,"url":null,"abstract":"An integrated navigation information system must know continuously the current position with a good precision. The required performance of the positioning module is achieved by using a cluster of heterogeneous sensors whose measurements are fused. The most popular data fusion method for positioning problems is the extended Kalman filter. The extended Kalman filter is a variation of the Kalman filter used to solve non-linear problems. Recently, an improvement to the extended Kalman filter has been proposed, the unscented Kalman filter. This paper describes an empirical analysis evaluating the performances of the unscented Kalman filter and comparing them with the extended Kalman filter's performances.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 223
Abstract
An integrated navigation information system must know continuously the current position with a good precision. The required performance of the positioning module is achieved by using a cluster of heterogeneous sensors whose measurements are fused. The most popular data fusion method for positioning problems is the extended Kalman filter. The extended Kalman filter is a variation of the Kalman filter used to solve non-linear problems. Recently, an improvement to the extended Kalman filter has been proposed, the unscented Kalman filter. This paper describes an empirical analysis evaluating the performances of the unscented Kalman filter and comparing them with the extended Kalman filter's performances.