J. Michopoulos, J. Steuben, A. Birnbaum, A. Iliopoulos, J. Aroh, A. Rollett, B. Gould
{"title":"Morphological Analysis of 316L Laser Powder Bed Fusion Melt-Pool via the Enriched Analytical Solution Method","authors":"J. Michopoulos, J. Steuben, A. Birnbaum, A. Iliopoulos, J. Aroh, A. Rollett, B. Gould","doi":"10.1115/detc2020-22455","DOIUrl":null,"url":null,"abstract":"\n The recent development of the Enriched Analytical Solution Method (EASM) for evaluating the spatio-temporal distribution of the temperature fields generated during the Laser Powder Bed Fusion (LPBF) Additive Manufacturing (AM) processes is provides an opportunity to study the sensitivity of the morphological parameters characterizing the associated melt-pools as a function of process parameters. The present work exercises the EASM for the case of a single-path trace over a 316L base plate under LPBF heat deposition conditions. To assist in the evaluation of solidification parameters, the spatial derivatives of the EASM are also derived. A process parameter subspace spanned by the scan velocity and the laser power is considered and the EASM is utilized for deriving a number of geometrical morphological characteristics of the melt pool as well as the quantities controlling the evolution of the solidification front. Finally, comparisons with initial experimental results obtained by in-situ high speed synchrotron X-ray imaging, capturing the spatio-temporal evolution of the melt pool profile are also presented.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The recent development of the Enriched Analytical Solution Method (EASM) for evaluating the spatio-temporal distribution of the temperature fields generated during the Laser Powder Bed Fusion (LPBF) Additive Manufacturing (AM) processes is provides an opportunity to study the sensitivity of the morphological parameters characterizing the associated melt-pools as a function of process parameters. The present work exercises the EASM for the case of a single-path trace over a 316L base plate under LPBF heat deposition conditions. To assist in the evaluation of solidification parameters, the spatial derivatives of the EASM are also derived. A process parameter subspace spanned by the scan velocity and the laser power is considered and the EASM is utilized for deriving a number of geometrical morphological characteristics of the melt pool as well as the quantities controlling the evolution of the solidification front. Finally, comparisons with initial experimental results obtained by in-situ high speed synchrotron X-ray imaging, capturing the spatio-temporal evolution of the melt pool profile are also presented.