Single-trial ERP Feature Extraction and Classification for Visual Object Recognition Task

Anatoly Bobe, Andrey Sergeevich Alekseev, M. Komarova, Dmitry Fastovets
{"title":"Single-trial ERP Feature Extraction and Classification for Visual Object Recognition Task","authors":"Anatoly Bobe, Andrey Sergeevich Alekseev, M. Komarova, Dmitry Fastovets","doi":"10.1109/EnT-MIPT.2018.00049","DOIUrl":null,"url":null,"abstract":"This paper describes a classification method of brain signals measured from a subject during visual stimuli presentation. The method is based on exploring the features of visual event related potentials (VERP) in both time and spatial domains. Independent component analysis (ICA) is used for extracting the basic phase-amplitude features. A method for artifact rejection is proposed for excluding the noisy trials. A category-level classifier based on a neural network is trained and its performance on a publicly available database is evaluated and analyzed.","PeriodicalId":131975,"journal":{"name":"2018 Engineering and Telecommunication (EnT-MIPT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Engineering and Telecommunication (EnT-MIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT-MIPT.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a classification method of brain signals measured from a subject during visual stimuli presentation. The method is based on exploring the features of visual event related potentials (VERP) in both time and spatial domains. Independent component analysis (ICA) is used for extracting the basic phase-amplitude features. A method for artifact rejection is proposed for excluding the noisy trials. A category-level classifier based on a neural network is trained and its performance on a publicly available database is evaluated and analyzed.
视觉目标识别任务的单次ERP特征提取与分类
本文描述了一种视觉刺激呈现过程中被试脑信号的分类方法。该方法是基于探索视觉事件相关电位(VERP)在时间和空间两个领域的特征。采用独立分量分析(ICA)提取基本相幅特征。提出了一种排除噪声试验的伪影抑制方法。本文训练了一个基于神经网络的分类器,并对其在公共数据库上的性能进行了评价和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信