Light field depth from multi-scale particle filtering

Jie Chen, Lap-Pui Chau, He Li
{"title":"Light field depth from multi-scale particle filtering","authors":"Jie Chen, Lap-Pui Chau, He Li","doi":"10.1109/APSIPA.2016.7820906","DOIUrl":null,"url":null,"abstract":"Rich information could be extracted from the high dimensional light field (LF) data, and one of the most fundamental output is scene depth. State-of-the-art depth calculation methods produce noisy calculations especially over texture-less regions. Based on Super-pixel segmentation, we propose to incorporate multi-level disparity information into a Bayesian Particle Filtering framework. Each pixels' individual as well as regional information are involved to give Maximum A Posteriori (MAP) predictions based on our proposed statistical model. The method can produce equivalent or better scene depth interpolation results than some of the state-of-the art methods, with possible potential in image processing applications such as scene alignment and stablization.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rich information could be extracted from the high dimensional light field (LF) data, and one of the most fundamental output is scene depth. State-of-the-art depth calculation methods produce noisy calculations especially over texture-less regions. Based on Super-pixel segmentation, we propose to incorporate multi-level disparity information into a Bayesian Particle Filtering framework. Each pixels' individual as well as regional information are involved to give Maximum A Posteriori (MAP) predictions based on our proposed statistical model. The method can produce equivalent or better scene depth interpolation results than some of the state-of-the art methods, with possible potential in image processing applications such as scene alignment and stablization.
多尺度粒子滤波的光场深度
高维光场数据可以提取丰富的信息,其中最基本的输出之一就是景深。最先进的深度计算方法会产生噪声计算,特别是在没有纹理的区域。在超像素分割的基础上,提出将多层次视差信息融合到贝叶斯粒子滤波框架中。基于我们提出的统计模型,利用每个像素的个体信息和区域信息给出最大后验A (MAP)预测。该方法可以产生与一些最先进的方法相当或更好的场景深度插值结果,在场景对齐和稳定等图像处理应用中具有潜在的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信