{"title":"A Law of Iterated Logarithm for Multi-Agent Reinforcement Learning","authors":"Gugan Thoppe, Bhumesh Kumar","doi":"10.1109/ICC54714.2021.9702912","DOIUrl":null,"url":null,"abstract":"In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment, as also with each other, for solving a shared problem in sequential decision-making. In this work, we derive a novel law of iterated logarithm for a family of distributed nonlinear stochastic approximation schemes that is useful in MARL. In particular, our result describes the convergence rate on almost every sample path where the algorithm converges. This result is the first of its kind in the distributed setup and provides deeper insights than the existing ones, which only discuss convergence rates in the expected or the CLT sense. Importantly, our result holds under significantly weaker assumptions: neither the gossip matrix needs to be doubly stochastic nor the stepsizes square summable.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9702912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment, as also with each other, for solving a shared problem in sequential decision-making. In this work, we derive a novel law of iterated logarithm for a family of distributed nonlinear stochastic approximation schemes that is useful in MARL. In particular, our result describes the convergence rate on almost every sample path where the algorithm converges. This result is the first of its kind in the distributed setup and provides deeper insights than the existing ones, which only discuss convergence rates in the expected or the CLT sense. Importantly, our result holds under significantly weaker assumptions: neither the gossip matrix needs to be doubly stochastic nor the stepsizes square summable.