Vision system for detection of white root disease infection based on capacitance properties

A. F. M. Sampian, H. Hashim, M. Kamal, N. E. Abdullah, Ummu Raihan Yussuf, N. A. Khairuzzaman, A. F. M. Azmi
{"title":"Vision system for detection of white root disease infection based on capacitance properties","authors":"A. F. M. Sampian, H. Hashim, M. Kamal, N. E. Abdullah, Ummu Raihan Yussuf, N. A. Khairuzzaman, A. F. M. Azmi","doi":"10.1109/I2CACIS.2016.7885312","DOIUrl":null,"url":null,"abstract":"This paper presents the findings of Visions System performance for the detection of White root disease infection based on capacitance properties. A number of 100 latex samples representing healthy and white root infected rubber tree is tested for its capacitance value using Prototype Console Unit (PCU) developed. An optimized model for ANN using Levenberg Marquardt was designed. It is found that the hidden layer size of neuron 2 gave the best optimized ANN model with 77% sensitivity, 88% specificity, 82.5% accuracy, and uses 5 numbers of connections. A vision system based on this optimized model is developed and has the performance of 78.34% total accuracy.","PeriodicalId":399080,"journal":{"name":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS.2016.7885312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the findings of Visions System performance for the detection of White root disease infection based on capacitance properties. A number of 100 latex samples representing healthy and white root infected rubber tree is tested for its capacitance value using Prototype Console Unit (PCU) developed. An optimized model for ANN using Levenberg Marquardt was designed. It is found that the hidden layer size of neuron 2 gave the best optimized ANN model with 77% sensitivity, 88% specificity, 82.5% accuracy, and uses 5 numbers of connections. A vision system based on this optimized model is developed and has the performance of 78.34% total accuracy.
基于电容特性的白根病感染视觉检测系统
本文介绍了基于电容特性的视觉系统检测白根病感染的性能研究结果。采用研制的原型控制单元(PCU)对100棵健康和白根感染橡胶树的乳胶样品进行了电容值测试。设计了一个基于Levenberg Marquardt的人工神经网络优化模型。发现神经元2的隐层大小给出了最佳的优化ANN模型,灵敏度为77%,特异性为88%,准确率为82.5%,并且使用了5个连接数。基于该优化模型开发的视觉系统,总准确率达到78.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信