Three Dimensional Emotion State Classification based on EEG via Empirical Mode Decomposition

Neha Gahlan, Divyashikha Sethia
{"title":"Three Dimensional Emotion State Classification based on EEG via Empirical Mode Decomposition","authors":"Neha Gahlan, Divyashikha Sethia","doi":"10.1109/ICAIA57370.2023.10169633","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is useful for mapping emotions directly from the brain, but its heterogeneous signals make it challenging to extract features accurately. Prior works for emotion classification uses EEG data without removing data heterogeneity leading to misclassification or inaccurate classification. This paper proposes an EMD-based methodology for EEG data that segments signals into multiple IMFs to remove heterogeneity and extract significant features. The proposed approach uses a Feed-Forward Neural Network (FFNN) to classify emotions via the VAD model and shows a 5-6% increment in accuracy, precision, and recall scores for emotion classification. Experimental results demonstrate good evaluation performance scores for classifying emotional states on two publicly accessible emotional datasets, AMIGOS and DREAMER.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) is useful for mapping emotions directly from the brain, but its heterogeneous signals make it challenging to extract features accurately. Prior works for emotion classification uses EEG data without removing data heterogeneity leading to misclassification or inaccurate classification. This paper proposes an EMD-based methodology for EEG data that segments signals into multiple IMFs to remove heterogeneity and extract significant features. The proposed approach uses a Feed-Forward Neural Network (FFNN) to classify emotions via the VAD model and shows a 5-6% increment in accuracy, precision, and recall scores for emotion classification. Experimental results demonstrate good evaluation performance scores for classifying emotional states on two publicly accessible emotional datasets, AMIGOS and DREAMER.
基于经验模态分解的脑电三维情绪状态分类
脑电图(EEG)可用于直接从大脑中绘制情绪,但其异质性信号使其难以准确提取特征。以往的情绪分类工作使用的是脑电数据,没有消除导致分类错误或分类不准确的数据异质性。本文提出了一种基于emd的EEG数据处理方法,该方法将信号分割成多个imf以去除异质性并提取重要特征。所提出的方法使用前馈神经网络(FFNN)通过VAD模型对情绪进行分类,并显示出情绪分类的准确性,精度和召回分数增加了5-6%。实验结果表明,在AMIGOS和dream两个公开访问的情绪数据集上,对情绪状态进行分类获得了较好的评价性能分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信