A. Hori, Kazumi Yoshinaga, T. Hérault, Aurélien Bouteiller, G. Bosilca, Y. Ishikawa
{"title":"Sliding Substitution of Failed Nodes","authors":"A. Hori, Kazumi Yoshinaga, T. Hérault, Aurélien Bouteiller, G. Bosilca, Y. Ishikawa","doi":"10.1145/2802658.2802670","DOIUrl":null,"url":null,"abstract":"This paper considers the questions of how spare nodes should be allocated, how to substitute them for faulty nodes, and how much the communication performance is affected by such a substitution. The third question stems from the modification of the rank mapping by node substitutions, which can incur additional message collisions. In a stencil computation, rank mapping is done in a straightforward way on a Cartesian network without incurring any message collisions. However, once a substitution has occurred, the node- rank mapping may be destroyed. Therefore, these questions must be answered in a way that minimizes the degradation of communication performance. In this paper, several spare-node allocation and nodesubstitution methods will be proposed, analyzed, and compared in terms of communication performance following the substitution. It will be shown that when a failure occurs, the peer-to-peer (P2P) communication performance on the K computer can be slowed by a factor of three and collective performance can be cut in half. On BG/Q, P2P performance can be slowed by a factor of five and collective performance can be slowed by a factor of ten. However, those numbers can be reduced by using an appropriate substitution method.","PeriodicalId":365272,"journal":{"name":"Proceedings of the 22nd European MPI Users' Group Meeting","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2802658.2802670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper considers the questions of how spare nodes should be allocated, how to substitute them for faulty nodes, and how much the communication performance is affected by such a substitution. The third question stems from the modification of the rank mapping by node substitutions, which can incur additional message collisions. In a stencil computation, rank mapping is done in a straightforward way on a Cartesian network without incurring any message collisions. However, once a substitution has occurred, the node- rank mapping may be destroyed. Therefore, these questions must be answered in a way that minimizes the degradation of communication performance. In this paper, several spare-node allocation and nodesubstitution methods will be proposed, analyzed, and compared in terms of communication performance following the substitution. It will be shown that when a failure occurs, the peer-to-peer (P2P) communication performance on the K computer can be slowed by a factor of three and collective performance can be cut in half. On BG/Q, P2P performance can be slowed by a factor of five and collective performance can be slowed by a factor of ten. However, those numbers can be reduced by using an appropriate substitution method.