Feature Pyramid Deep Matching and Localization Network for Image Forensics

Kui Ye, Jing Dong, Wei Wang, Bo Peng, T. Tan
{"title":"Feature Pyramid Deep Matching and Localization Network for Image Forensics","authors":"Kui Ye, Jing Dong, Wei Wang, Bo Peng, T. Tan","doi":"10.23919/APSIPA.2018.8659464","DOIUrl":null,"url":null,"abstract":"To advance the state of the art of image forensics technologies, a new formulation of splicing localization is proposed, which aims to obtain the masks for both the query and donor images for a pair of query(probe) image and potential donor image if a region of the donor image was spliced into the probe. The former Deep Matching and Validation Network(DMVN) addresses the problem with a novel end-to-end learning based solution. Inheriting the deep dense matching layer, we propose Feature Pyramid Deep Matching and Localization Network(FPLN), whose contributions are three folds. Firstly, instead of using just one feature map as in DMVN, FPLN utilizes a pyramid of feature maps with different resolutions w.r.t. the input image to achieve better localization performance, especially for small objects. Secondly, we add a fusion layer that fuses together all the features after deep dense matching layer, which not only takes full advantage of the correlation information between those features, but is also able to integrate two pathways in DMVN into just one simple pathway, simplifying the subsequent architecture. Lastly, we employ focal loss to address the imbalance problem, as the foreground area is usually much smaller than the background area. The experiments demonstrate the superior performance of our proposed method in detection accuracy and in localizing small tempered regions.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To advance the state of the art of image forensics technologies, a new formulation of splicing localization is proposed, which aims to obtain the masks for both the query and donor images for a pair of query(probe) image and potential donor image if a region of the donor image was spliced into the probe. The former Deep Matching and Validation Network(DMVN) addresses the problem with a novel end-to-end learning based solution. Inheriting the deep dense matching layer, we propose Feature Pyramid Deep Matching and Localization Network(FPLN), whose contributions are three folds. Firstly, instead of using just one feature map as in DMVN, FPLN utilizes a pyramid of feature maps with different resolutions w.r.t. the input image to achieve better localization performance, especially for small objects. Secondly, we add a fusion layer that fuses together all the features after deep dense matching layer, which not only takes full advantage of the correlation information between those features, but is also able to integrate two pathways in DMVN into just one simple pathway, simplifying the subsequent architecture. Lastly, we employ focal loss to address the imbalance problem, as the foreground area is usually much smaller than the background area. The experiments demonstrate the superior performance of our proposed method in detection accuracy and in localizing small tempered regions.
图像取证的特征金字塔深度匹配与定位网络
为了提高图像取证技术的水平,提出了一种新的拼接定位公式,其目的是在将供体图像的一个区域拼接到探针中时,对一对查询(探针)图像和潜在供体图像获得查询图像和供体图像的掩码。前一种深度匹配和验证网络(DMVN)用一种新颖的端到端学习解决方案解决了这个问题。在继承深度密集匹配层的基础上,提出了特征金字塔深度匹配与定位网络(FPLN),其贡献有三方面。首先,FPLN不像DMVN那样只使用一个特征图,而是在输入图像的基础上利用不同分辨率的特征图金字塔来实现更好的定位性能,特别是对于小物体。其次,我们在深度密集匹配层之后增加融合层,将所有特征融合在一起,既充分利用了特征之间的相关信息,又能将DMVN中的两条路径整合为一条简单的路径,简化了后续的架构。最后,我们利用焦损来解决不平衡问题,因为前景区域通常比背景区域小得多。实验结果表明,该方法在检测精度和小回火区域定位方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信