ADTR: Anomaly Detection Transformer with Feature Reconstruction

Zhiyuan You, Kai Yang, Wenhan Luo, Lei Cui, Xinyi Le, Yu Zheng
{"title":"ADTR: Anomaly Detection Transformer with Feature Reconstruction","authors":"Zhiyuan You, Kai Yang, Wenhan Luo, Lei Cui, Xinyi Le, Yu Zheng","doi":"10.48550/arXiv.2209.01816","DOIUrl":null,"url":null,"abstract":"Anomaly detection with only prior knowledge from normal samples attracts more attention because of the lack of anomaly samples. Existing CNN-based pixel reconstruction approaches suffer from two concerns. First, the reconstruction source and target are raw pixel values that contain indistinguishable semantic information. Second, CNN tends to reconstruct both normal samples and anomalies well, making them still hard to distinguish. In this paper, we propose Anomaly Detection TRansformer (ADTR) to apply a transformer to reconstruct pre-trained features. The pre-trained features contain distinguishable semantic information. Also, the adoption of transformer limits to reconstruct anomalies well such that anomalies could be detected easily once the reconstruction fails. Moreover, we propose novel loss functions to make our approach compatible with the normal-sample-only case and the anomaly-available case with both image-level and pixel-level labeled anomalies. The performance could be further improved by adding simple synthetic or external irrelevant anomalies. Extensive experiments are conducted on anomaly detection datasets including MVTec-AD and CIFAR-10. Our method achieves superior performance compared with all baselines.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Anomaly detection with only prior knowledge from normal samples attracts more attention because of the lack of anomaly samples. Existing CNN-based pixel reconstruction approaches suffer from two concerns. First, the reconstruction source and target are raw pixel values that contain indistinguishable semantic information. Second, CNN tends to reconstruct both normal samples and anomalies well, making them still hard to distinguish. In this paper, we propose Anomaly Detection TRansformer (ADTR) to apply a transformer to reconstruct pre-trained features. The pre-trained features contain distinguishable semantic information. Also, the adoption of transformer limits to reconstruct anomalies well such that anomalies could be detected easily once the reconstruction fails. Moreover, we propose novel loss functions to make our approach compatible with the normal-sample-only case and the anomaly-available case with both image-level and pixel-level labeled anomalies. The performance could be further improved by adding simple synthetic or external irrelevant anomalies. Extensive experiments are conducted on anomaly detection datasets including MVTec-AD and CIFAR-10. Our method achieves superior performance compared with all baselines.
ADTR:带有特征重构的异常检测变压器
由于异常样本的缺乏,仅利用正常样本的先验知识进行异常检测越来越受到人们的关注。现有的基于cnn的像素重建方法存在两个问题。首先,重构源和目标是包含不可区分语义信息的原始像素值。其次,CNN倾向于重建正常样本和异常样本,这使得它们仍然难以区分。在本文中,我们提出了异常检测变压器(ADTR)来应用变压器来重建预训练的特征。预训练的特征包含可区分的语义信息。此外,采用变压器限位法对异常进行了很好的重建,使得重建失败后可以很容易地检测到异常。此外,我们提出了新的损失函数,使我们的方法兼容于图像级和像素级标记异常的正常样本情况和异常可用情况。通过添加简单的合成异常或外部不相关异常,可以进一步提高性能。在MVTec-AD和CIFAR-10等异常检测数据集上进行了大量实验。与所有基线相比,我们的方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信