{"title":"Radiation Heat Transfer to the Leeward Side of a Massive Object Suspended Over a Pool Fire","authors":"M. Kramer, M. Greiner, J. Koski","doi":"10.1115/imece2001/htd-24250","DOIUrl":null,"url":null,"abstract":"\n A series of large-scale experiments were recently performed to measure heat transfer to a massive cylindrical calorimeter engulfed in a 30-minute circular-pool fire [1]. The calorimeter inner surface temperature was measured at several locations and an inverse conduction technique was used to determine the net heat flux. The flame emissive heat flux was measured at several locations around the calorimeter. Light winds of around 2 m/s blew across the calorimeter axis at the beginning of the test but diminished and stopped as the test continued. The winds tilted the fire so that the windward side of the calorimeter was only intermittently engulfed. As a result, the measured flame emissive power near the windward side was substantially less than the leeward surface. The variation of calorimeter temperature and heat flux was closely correlated with the measured flame emissive power.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A series of large-scale experiments were recently performed to measure heat transfer to a massive cylindrical calorimeter engulfed in a 30-minute circular-pool fire [1]. The calorimeter inner surface temperature was measured at several locations and an inverse conduction technique was used to determine the net heat flux. The flame emissive heat flux was measured at several locations around the calorimeter. Light winds of around 2 m/s blew across the calorimeter axis at the beginning of the test but diminished and stopped as the test continued. The winds tilted the fire so that the windward side of the calorimeter was only intermittently engulfed. As a result, the measured flame emissive power near the windward side was substantially less than the leeward surface. The variation of calorimeter temperature and heat flux was closely correlated with the measured flame emissive power.