Sparse Multivariate GARCH

Wu Jianbin, G. Dhaene
{"title":"Sparse Multivariate GARCH","authors":"Wu Jianbin, G. Dhaene","doi":"10.2139/ssrn.2799549","DOIUrl":null,"url":null,"abstract":"We propose sparse versions of multivariate GARCH models that allow for volatility and correlation spillover effects across assets. The proposed models are generalizations of existing diagonal DCC and BEKK models, yet they remain estimable for high-dimensional systems of asset returns. To cope with the high dimensionality of the model parameter spaces, we employ the L1 regularization technique to penalize the off-diagonal elements of the coefficient matrices. A simulation experiment for the sparse DCC model shows that the true underlying sparse parameter structure can be uncovered reasonably well. In an application to weekly and daily market returns for 24 countries using data from 1994 to 2014, we find that the sparse DCC model outperforms the standard DCC and the diagonal DCC models in and out of sample. Likewise, the sparse BEKK model outperforms the diagonal BEKK model.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2799549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose sparse versions of multivariate GARCH models that allow for volatility and correlation spillover effects across assets. The proposed models are generalizations of existing diagonal DCC and BEKK models, yet they remain estimable for high-dimensional systems of asset returns. To cope with the high dimensionality of the model parameter spaces, we employ the L1 regularization technique to penalize the off-diagonal elements of the coefficient matrices. A simulation experiment for the sparse DCC model shows that the true underlying sparse parameter structure can be uncovered reasonably well. In an application to weekly and daily market returns for 24 countries using data from 1994 to 2014, we find that the sparse DCC model outperforms the standard DCC and the diagonal DCC models in and out of sample. Likewise, the sparse BEKK model outperforms the diagonal BEKK model.
稀疏多元GARCH
我们提出了多元GARCH模型的稀疏版本,该模型允许跨资产的波动性和相关溢出效应。所提出的模型是现有对角DCC和BEKK模型的推广,但它们对于资产回报的高维系统仍然是可估计的。为了应对模型参数空间的高维性,我们采用L1正则化技术来惩罚系数矩阵的非对角线元素。对稀疏DCC模型的仿真实验表明,该模型可以较好地揭示真实的底层稀疏参数结构。在使用1994年至2014年的数据对24个国家的周和日市场回报进行应用时,我们发现稀疏DCC模型在样本内外都优于标准DCC和对角DCC模型。同样,稀疏BEKK模型优于对角BEKK模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信